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Abstract

This paper studies the implications of parameter learning on the cross-section of stock
returns. We propose a production-based general equilibrium model to study the link
between capital age, timing of cash flows and expected returns in the cross-section of
stocks. Our model features slow learning about firms’ exposure to aggregate produc-
tivity shocks over time. Firms with old capital are assumed to have more information
about their exposure than firms with young capital. Our framework provides a unified
explanation of the following stylized empirical facts: old capital firms (1) have higher
capital allocation efficiency; (2) are more exposed to aggregate productivity shocks and
hence earn higher expected returns, which we call it the capital age premium; (3) have
shorter cash-flow duration, as compared with young capital firms.
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1 Introduction

Parameter uncertainty is ubiquitous in finance. In this paper, we study the implications

of parameter learning on the cross-section of stock returns. We develop a production-based

general equilibrium asset pricing model and its key mechanism is that individual firms have

imperfect information about their productivity and have to learn about their exposure to

aggregate productivity shock over time. We show this model framework provides a uni-

fied explanation of a wide set of empirical facts on the links between capital age, resource

allocation efficiency, timing of cash flows and expected returns in the cross-section of stocks.

The key model assumption is that old capital age firms have more information about

their exposure than young capital age firms though learning. It is directly motivated by

the empirical evidence in Section 2 that old capital age firms have less capital misalloca-

tions than young firms, because more information allows firms to better allocate resources.

This key assumption leads to several important implications in the cross-section. First, In

the equilibrium, heterogeneity in information translates into heterogeneity in risk exposures

across different capital vintages. In particular, more precise information makes old capital

age firms to be more sensitive to the common productivity shocks, and therefore, it implies

a high average return of old capital age firms.

Second, this assumption also generates a negative link between capital age and duration

of cash flow. Since young capital age firms have less information, hence, they have lower

resource reallocation efficiency, are less able to take advantage of the aggregate technology

growth, and pay lower payouts than when they get older. Therefore, young capital age firms

should feature longer duration, as their future cash flows get more weight. Old capital firms,

in contrast, should have shorter duration.

These model implications are strongly supported by the empirical evidence. In order

to investigate the empirical link between capital age, duration of cash flow and expected

returns in the cross-section, we first construct the capital age measure. Following Salvanes

and Tveteras (2004), Ai, Croce, and Li (2012), Ai, Croce, Diercks, and Li (2018) and Lin,

Palazzo, and Yang (2017), we measure firm’s capital age of the U.S. public listed companies

as a weighted average of the age of each capital vintage. Details of capital age construction

refer to Appendix D.2 . We then implement the standard procedure and sort firms into

quintile portfolios based on these firms’ capital ages within Fama-French 30 industries. As

reported in Table 2, the average equity excess return for firms with old capital age (Quintile

O) is 5.79% higher on an annualized basis than that of the young capital age firms (Quintile

Y). We call the return spread of a long-short old-minus-young (OMY) strategy the capital

age premium. The return difference is statistically significant with a t-value of 2.91, and
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its Sharpe ratio is 0.44. The evidence on the capital age premium is consistent with the

empirical finding in Lin et al. (2017). Moreover, we also find a negative correlation between

capital age and cash flow duration in Table 7, in which the cash flow duration is defined by

Dechow, Sloan, and Soliman (2004).

We provide extensive empirical evidence that directly supports the key learning mecha-

nism. First, we document that the productivity of new vintages of capital is less sensitive

to aggregate productivity shocks than that of older vintages, consistent with the finding Ai

et al. (2012). Second, we find that young capital firms have a lower learning rate about

their exposure than old capital firms, consistent with the assumption about heterogenous

information across capital vintages. Third, we also find that the normalized payouts of

young capital firms have a lower exposure to both the long-run and short-run aggregate

productivity shocks than those of old capital firms.

We also examine the empirical evidence that differentiates our explanation from other

alternative economic channels for the capital age premium. Lin et al. (2017) argues the

technology adoption shock (TAS) as an additional source of risk that drives the capital

age premium. We document that, even within those industries whose output growth or

technology are not affected much by technology adoption shocks, the capital age premium

are still present and significant, though its magnitude of the return spread is lower than that

among high TAS exposure industries. This empirical evidence implies that both channels

are in play and significantly determine the capital age premium. Moreover, the learning

mechanism in this paper also coherently derives the negative relationships between capital

age, capital misallocation and cash flow duration.

Our calibrated model quantitatively matches the conventional macroeconomic quantity

dynamics and asset pricing moments, and, more importantly, it is able to quantitatively ac-

count for the empirical relationship between capital age, duration of cash flows, and expected

returns in the cross-section.

Literature Review This paper belongs to the literature on asset pricing in production

economy, for which Kogan and Papanikolaou (2012) provide an excellent survey. It departs

from previous articles in two significant aspects. First, our paper addresses the equity pre-

mium puzzle, so does the rest of the literature, but more importantly we focus on the spread

between returns on old versus young capital firms. Second, we nest a tractable vintage cap-

ital model into a general equilibrium in which individual firms have imperfect information

about their productivity and have to learn about it over time, while most of previous work

assumes perfect information. In this regard, our paper is closely related to Ai et al. (2012)

and Ai et al. (2018), but, differently, we study the implications on the cross-section.
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Our paper is also connected to the literature that links investment to the cross section

of expected returns. Zhang (2005) provides an investment-based explanation for the value

premium. Chan, Lakonishok, and Sougiannis (2001) and Lin (2012) focus on the relationship

between R&D investment and stock returns. Eisfeldt and Papanikolaou (2013) develops a

model of organizational capital and expected returns. Our paper is closely related to Lin

et al. (2017). Both papers document the capital age premium. The key difference is that

Lin et al. (2017) provides a partial equilibrium model and emphasizes an additional source

of technology adoption risk, while our paper is a general equilibrium framework and the key

learning mechanism endogenously generates the asymmetric exposures of old versus young

capital firms to the conventional aggregate productivity shocks. Moreover, the learning

mechanism in our paper also coherently drives the negative relationships between capital

age, capital misallocation and cash flow duration.

The learning mechanism that we emphasize in this paper is related to the literature

that studies the impact of learning on asset market valuations. Pastor and Veronesi (2009)

provide an excellent survey on learning models in finance. David (1997) and Veronesi (2000)

study how learning and information affect both asset valuations and the risk premium on the

equity market. Pástor and Veronesi (2009) present a model in which learning impacts the

life-cycle dynamics of firms and their exposure to aggregate risks. The implication of their

model that young firms are less exposed to aggregate shock than older firms is consistent

with ours.

The rest of the paper is organized as follows. We summarize our motivating empirical

facts on the relationship between capital age, capital misallocations and expected returns in

Section 2. We describe a general equilibrium model with production and parameter learning

and analyze its quantitative asset pricing implications in Section 3. In Section 4, we provide

direct supporting evidence on the learning mechanism and discuss the calibration of key

learning parameters. In Section 5, we provide a quantitative analysis of our model. Some

additional testable implications are presented in Section ??. Section 7 concludes.

2 Empirical facts

In this section, we present several empirical facts that motivate our interest in studying

the link between imperfect information, parameter learning and the cross-section of expected

returns sorted on capital age. Here, we provide a brief description of the evidence, but will

leave details of the data construction to Appendix D.

First, we investigate the empirical link between capital age and capital misallocation.1

1“Misallocation” is somewhat of a misnomer in our environment, as firms are acting optimally given the
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Following Salvanes and Tveteras (2004), Ai et al. (2012), Ai et al. (2018) and Lin et al. (2017),

we measure firm’s capital age of the U.S. public listed companies as a weighted average of

the age of each capital vintage. Details of capital age construction refer to Appendix D.2

. We then implement the standard procedure and sort firms into quintile portfolios based

on these firms’ capital ages within Fama-French 30 industries. Table 1 reports the cross-

sectional dispersion of the marginal product of capital (MPK hereafter) within each quintile

portfolios, as a measure of capital misallocation following Hsieh and Klenow (2009). Within

each quintile portfolios of firms, we first calculate the MPK dispersion within narrowly

defined industries, either at the Fama-French 30 industries level or at a more refined SIC

two digit level, and then average the dispersion across the industries.

From Table 1, we observe a salient inverse relationship between capital age and capital

misallocation. That is, portfolios with higher capital age present lower capital misallocation,

ranging from 1.13 in the young capital age quintile to 0.77 in the old capital age quintile. Such

downward sloping pattern of misallocation across capital age sorted portfolios are robust not

only to different industry classifications but also to different measures of MPK dispersion,

as used in Chen and Song (2013) or in David, Schmid, and Zeke (2018), respectively.

The negative relationship between capital age and capital misallocation provides sugges-

tive evidence to support our key model assumption that young capital age firms contain less

information about their exposures to the common productivity shocks than old capital age

firms. Consistent with David, Hopenhayn, and Venkateswaran (2016), less information leads

to lower resource reallocation efficiency. In our model, we assume old capital age firms con-

tain full information about their exposure, but the evidence shows they still display positive

MPK dispersion. This may be attributable to other factors, for example, adjustment costs,

financial constraints, taxes, and regulations, that are not inside our model.

Next, we present the evidence on the cross-section of stock returns based on capital age

sorted portfolios. Table 2 reports average annualized excess returns, t-statistics, and Sharpe

ratios of the five capital age sorted portfolios. The average equity excess return for firms with

old capital age (Quintile O) is 5.79% higher on an annualized basis than that of the young

capital age firms (Quintile Y). We call the return spread of a long-short old-minus-young

(OMY) strategy the capital age premium. The return difference is statistically significant

with a t-value of 2.91, and its Sharpe ratio is 0.44, which is almost comparable to that of

the aggregate stock market index (around 0.5). The evidence on the capital age premium is

consistent with the empirical finding in Lin et al. (2017), with a slight difference that we sort

portfolios within industries to control for industry heterogeneity, while Lin et al. (2017) does

information at hand. We follow the literature and use the term to refer broadly to deviations from marginal
product equalization.

5



Table 1. Misallocations on Capital Age Sorted Portfolios

This table reports time-series averages of capital misallocations within five capital age quintile portfolios.
The capital misallocation is computed through a two-step procedure: First, we compute the cross-sectional
dispersion of marginal product of capital (MPK) relative to their industry peers with narrowly defined
industry (either Fama-French 30 industries or SIC 2-digit industry code). Second, we take average of the
dispersion measure across industries. Misallocation 1 measures MPK by the ratio of operating income before
depreciation (OIDBP) to one-year-lag net plant, property and equipment (PPENT) as in Chen and Song
(2013), while Misallocation 2 measures MPK as sales over one-year-lag net plant, property and equipment
(PPENT) as in David, Schmid, and Zeke (2018). The sample period is from December 1978 to July 2016
and excludes utility, financial, and R&D intensive industries from the analysis. The detailed definition of
the variables refers to Appendix.

Y 2 3 4 O
Capital Age 9.71 15.04 19.86 24.66 35.95
Misallocation 1
SIC 2-digit 1.02 0.88 0.81 0.80 0.77
FF30 1.09 0.93 0.87 0.85 0.79
Misallocation 2
SIC 2-digit 1.12 0.91 0.84 0.79 0.82
FF30 1.13 0.93 0.87 0.90 0.93
Number of Firms 480 469 471 467 458

not. In this paper, we propose a learning mechanism that emphasizes firms are uncertain

about their firm-specific exposures, and hence, our theory guides us to compare firms with

the same industry that presumably have the same industry common exposures.

Table 2. Univariate Portfolio Sorting on Capital Age

This table shows asset pricing tests for five portfolios sorted on capital age relative to firm’s industry peers,
where we use the Fama-French 30 industry classifications and rebalence portfolios at the beginning of January,
April, July, and October. The results use monthly data, where the sample period is July 1979 to December
2016 and excludes utility, financial, and R&D intensive industries from the analysis. We report average
excess returns over the risk-free rate E[R]-Rf, standard deviations σ, and Sharpe ratios SR across portfolios.
Standard errors are estimated by Newey-West correction with ***, **, and * indicate significance at the 1,
5, and 10% levels. We include t-statistics in parentheses and annualize the portfolio alphas by multiplying
12. All portfolios returns correspond to value-weighted returns by firm market capitalization.

Variables Y 2 3 4 O OMY
E[R] - Rf (%) 3.32 6.50** 8.34*** 8.19*** 9.11*** 5.79***
[t] 0.95 2.24 3.44 3.48 3.76 2.91
Std (%) 21.16 18.43 15.39 14.69 15.2 13.27
SR 0.16 0.35 0.54 0.56 0.60 0.44

In sum, the above two facts together suggest that the learning mechanism proposed in

this paper provides a potential coherent explanation. On one hand, old firms contain more

precise information about their exposure to common productivity shocks, and hence has

lower capital misallocation; on the other hand, old firms with more information allows them

6



to take better advantage of aggregate technological progress, and therefore, they feature a

high exposure to aggregate shocks and hence expect to earn a higher average return. In

the next section, we develop a production-based general equilibrium model with learning to

formalize the above intuition and to quantitatively account for the capital age premium.

3 Model Setup

The key mechanism of our model is that firms learn about their exposure to aggregate

productivity shock over time. In this section, we first describe the learning mechanism in

a static framework. Then we incorporate learning into a general equilibrium model with

different capital vintages to formalize our intuition and study its implications for the cross-

section of expected returns.

3.1 Aggregation with learning

3.1.1 Static Problem

We start with a static setup similar to that of Melitz (2003) and Hsieh and Klenow (2009).

Consider a group of infinitesimal firm units indexed with i. They produce intermediate inputs

yi, which can be transformed into final output Y using a CES production function:

Y =

[∫
yνi di

] 1
ν

, (1)

in which the parameter ν controls the elasticity of substitution between intermediate inputs.

Firms use capital and labor to produce intermediate goods through the production function:

yi = kαi (Aini)
1−α

We assume that Ai = eβi∆a, where ∆a is a common shock that affects the productivity of

all firms, and βi is the firm-specific exposure to the common shock ∆a. We assume the firm

managers do not know exactly their exposure, βi, and have to make production decision based

on their interference on βi. To facilitate a close-form solution, we assume that conditioning

on the common shock ∆a, βi has a prior of a normal distribution N(µ, 1
∆a
σ2). Before making

the production decision, each firm receives a noisy signal of its own exposure:

si = βi + εi, (2)
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where εi ∼ i.i.d.N(0, 1
∆a
τ 2). The parameter τ 2 determines the level of noise in firm signals.

When τ = 0, firms have perfect information about their exposure to the common shocks.

As τ 2 increases, firms are less certain about their exposure to common shocks, and input

choices are less efficient. In the extreme case which τ → ∞, signals are not informative at

all.

Each firm chooses capital and labor inputs to maximize expected profit under its infor-

mation set:

max
ki,ni

Es[k
α
i (Aini)

1−αpi]−Rki −Wni, (3)

where R is the capital rent and W is the wage rate, and Es denotes the belief given signal s,

and it explicitly emphasizes that firm takes its signal into consideration when making pro-

duction decision. pi is the market price of the intermediate good j, which can be determined

as the marginal product of intermediate input ∂Y
∂yi

through a profit optimization problem of

a competitive final output producer.

In this economy, we adopts Dixit-Stiglitz aggregate production function among interme-

diate inputs with imperfect substitution, but different from Melitz (2003) and Hsieh and

Klenow (2009), we assume that the intermediate good producers are perfectly competitive.

This assumption allows us to focus on imperfect information as the only source of resource

reallocation inefficiency in our dynamic setup, and promises the second welfare theorem still

holds. Under this assumption, all the intermediate firms take price pi as given when solving

their maximization problems, and each firm’s production quantity has no impact on the

market price pi.

Define the aggregate production function of the firm group as

F (K,N) ≡
[∫

(kαi (Aini)
1−α)νdi

] 1
ν

subject to:

∫
kidi = K,∫

nidi = N,

where for each i, the choices of ki, ni must be measurable with respect to firm i’s information.

That is, ki and ni can only be functions of the signal si. In Appendix A.1 , we prove that

the optimality of resource allocation implies that the aggregate production can be written

as Y = Kα(AN)1−α, where

A = E
[
Es(A

(1−α)ν
i )

1
1−ν

] 1−ν
(1−α)ν

.
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For simplicity, we impose the normalization condition µ = 1 − 1
2
(1 − α)νσ2 throughout

the paper. As we will show below, this normalization assumption implies that the exposure

to the aggregate productivity ∆a is 1 in the case of no information (τ =∞). The functional

form of group level production function is given by the following lemma:

Lemma 1. The aggregate production function is given by

F (K,N) = Kα(AN)1−α,

where the aggregate productivity is given by ln A = λ(τ 2)∆a, and λ(τ 2) is defined as

λ(τ 2)∆a =

[
1 +

1

2
(1− α)

ν2

1− ν
σ4

σ2 + τ 2

]
∆a.

In the no private information case,

lim
τ2→∞

λ(τ 2) = 1,

and in the full information case,

λ∗ = lim
τ2→0

λ(τ 2) = 1 +
1

2
(1− α)

ν2

1− ν
σ2.

Proof. See Appendix A

The above lemma has two intuitive implications. First, as firms acquire better informa-

tion about their productivity, they can better allocate capital and labor across each other,

as a result, the level of the aggregate productivity shock AN increases with information pre-

cision because λ(τ 2) is decreasing in τ 2. If we compare λ(τ 2) under the no information case

and full information case, it is quite clear that we have λ∗ > 1. Second, better allocation in-

duced by higher information precision also acts as a risk exposure amplification mechanism,

because the exposure to common productivity shocks increases with information precision.

3.1.2 Dynamic perpetual learning

Now we extend the above setup to a dynamic setting. Firm i productivity follows the

following stochastic growth process:

Ai,t = exp[
t∑

u=0

βi,u∆au], (4)

9



where {∆au}tu=0 is a sequence of common productivity shocks. For u = 0, 1, ..., t, βi,u is

the exposure of firm i’s productivity with respect to the common shock ∆au. We assume

{βi,u}tu=0 to be i.i.d across firm i and over t and has a prior distribution of N(µ, 1
∆au

σ2) as

in the static setup.

We allow for perpetual learning, that is, we allow firms to receive new signals about the

entire history of their exposure coefficients in every period t. We describe the signal arrival

process as below:

For a typical firm i starting its operation at time 0, its productivity Ai,t follows equation

(4). Due to perpetual learning, at period t, firm i will receive a sequence of new signals

{si,u,t}tu=0, and each element in this sequence, si,u,t(u ≤ t), is a signal received by the firm

manager i at period t for inferring the exposure coefficient βi,u. In another word, for a

typical signal, si,u,t(u ≤ t), the second subscript u indexes the exposure coefficient βi,u that

the signal is used for, and the third subscript t denotes the arrival time of this signal. At

the next period t + 1, for each coefficient in {βi,u}t+1
u=0, there will be a new signal sequence

{si,u,t+1}t+1
u=0.

The signal processes at time t are described as below:

si,0,t = βi,0 + ε0,t with ε0,t ∼ N(0,
1

∆a0

τ 2
0,t);

si,1,t = βi,1 + ε1,t with ε1,t ∼ N(0,
1

∆a1

τ 2
1,t);

...

si,u,t = βi,u + εu,t with εu,t ∼ N(0,
1

∆au
τ 2
u,t);

...

si,t,t = βi,t + εt,t with εt,t ∼ N(0,
1

∆at
τ 2
t,t),

(5)

At the micro-level, the parameter σ and the sequence of noise parameters {{τu,t}tu=0}∞t=0

are the primitive parameters of the learning model. The parameter σ is the dispersion of

firms’ exposure to the aggregate productivity shocks. Intuitively, higher dispersion implies

more benefit of reallocating resources across firms.

3.1.3 Capital vintages, information structure and the aggregation

The main purpose of this paper is to study the implications of learning on the cross-

section of the firms. We choose a setup which allows us to talk about the link between

capital age and expected returns, meanwhile we do not need to keep track of the distribution
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of firms with heterogenous information. In particular, we assume that firms can be divided

into n̄ generations with the generation index n. In our quantitative model, we set n̄ = 5,

corresponding to 5 capital age sorted portfolios in the empirical section. We use n = 1 to

denote the youngest generation, while use n = n̄ to denote the mature firms. Within each

generation, there is a continuum of firms indexed with i that produce intermediate inputs,

yi. These outputs can be transformed into group-level output Yn using a CES production

function in the same fashion as in (1).

The sole distinction across firms in different generations is different levels of information

precision. Motivated by the suggestive evidence in Section 2 on a negative relation between

capital age and capital misallocation, we make a key assumption that more senior generation

firms have more information about their exposure coefficients to the aggregate productivity.

In the model, higher information precision is reflected by lower signal noise (τ 2). In the

extreme case, we assume that mature firms (generation n̄) know the exact values of {βi,u}tu=0,

that is, mature firms have full information about their exposures. When a new project is

launched, managers do not exactly know its idiosyncratic exposure to aggregate productivity.

Over time, managers accumulate more precise information about the project and make

better resource allocation decision. We do not emphasize the learning of the exposure that

is common among similar technology or similar business model, which can potentially be

learned from other firms or past experience. Instead, we emphasize the imperfect information

about firm specific exposure that can only be learned through its operation.

The learning parameters at the micro-level {{τu,t}tu=0}∞t=0 is an infinite-dimensional ob-

ject, and not directly observable in the data. In the Appendix A.2 , equations (A3) and

(A4) show that we can specify the sequence of {{τu,t}tu=0}∞t=0 as functions of parameters λn

and ρn,s for n = 1, 2, ..., n̄, and we further have a recursive representation of group level

productivity growth as in Lemma 2:

Lemma 2. The aggregate output of firm group n is

Yn,t = Kα
n,t(An,tNn,t)

1−α (6)

The productivity of mature firm group (n = n̄) is

An̄,t = exp[
t∑

u=0

λ∗∆au] (7)

If the sequence of noise parameters {{τu,t}tu=0}∞t=0 are specified as functions of λn and ρn,s

for n = 1, 2, ..., n̄ as equations (A3) and (A4) in Appendix A.2 , then the ratio between the

productivity of young firms (n < n̄) and that of the mature firms (n = n̄), χn,t, is stationary
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and follows an AR(1) process:

χn,t+1 = ln An̄,t+1 − ln An,t+1 = ρn,sχn,t + (λ∗ − λn)∆at+1. (8)

In addition, the law of motion of the productivity for mature firms (n = n̄) follows:

ln An̄,t+1 − ln An̄,t = λ∗∆at+1, (9)

and, with χn,t as the state variable, the law of motion for the productivity of young firms

(n < n̄) follows

ln An,t+1 − ln An,t = (1− ρn,s)χn,t + λn∆at+1. (10)

We make several comments about Lemma 2. First, it is clear that young firms with

imperfect information about their exposures will be less productive than mature firms on

average. In order to guarantee the balanced growth, we keep the specification of productivity

in equation (4), and allow for perpetual learning, that is, we allow firms to receive new

signals about the entire history of their exposure coefficients in every period t, for which the

arrival of signals is described in (5). Lemma 2 shows that, thanks to the perpetual learning,

young firms can eventually obtain full information about their exposures, and it rules out

permanent productivity gaps between young and mature firms and guarantees balanced

growth. In particular, equations (8), (9) and (10) fully specify the aggregate productivity of

young and mature firms, that features the balanced growth.

Second, the parameters λn characterizes young firms’ contemporaneous exposure to com-

mon shocks. As shown in equation (A3), λn is decreasing in the noise of the signal, τ 2. This

is consistent with Lemma that firms with less information precision are less sensitive to the

aggregate productivity shocks. Based on equation (A4), 1 − ρn,s can be interpreted as the

learning rate about productivity. ρn,s is increasing in the sequence of variances of the signals.

Intuitively, higher values of τ 2 imply that young firms’ information is less precise and, as a

result, the productivity gap between young firms and mature firms can persistent for many

periods.

Third, In our quantitative analysis, we do not directly specify the micro learning param-

eters σ and {{τu,t}tu=0}∞t=0. Rather we calibrate the macro parameters, the contemporaneous

exposure λn and the learning rate ρn,s, for each firm generation n. We estimate these param-

eters from the difference in the exposure of young and old firms with respect to aggregate

productivity shocks. As will be detailed in Section 4, the empirical evidences shows that

λn+1 > λn and ρn,s > ρn+1,s, that is, younger firms have lower exposure to contemporaneous

exposure to common productivity shocks and features a lower learning rate. The evidence
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strongly support our assumptions that young firms have less information on their firm specific

exposure to common productivity shocks than mature firms.

3.2 The full model

3.2.1 Preferences

Time is discrete and infinite, and indexed by t. In this economy, there is a representative

agent with Kreps and Porteus (1978) preferences, like in Epstein and Zin (1989):

Vt = {(1− β)C
1− 1

ψ

t + β(Et[V
1−γ
t+1 ])

1−1/ψ
1−γ }

1
1−1/ψ (11)

where Ct denotes the aggregate consumption at time t. For model parsimony, we do not

consider the dis-utility from the labor, and hence, the labor supply is inelastic.

3.2.2 Output Producers

Following the long-run risks literature, the stochastic process for the common productivity

growth is specified as

∆at+1 = µ+ xt + eσaεa,t+1

xt+1 = ρxt + eσxεx,t+1[
εa,t+1

εx,t+1

]
∼ i.i.d.N

([
0

0

]
,

[
1 0

0 1

]) (12)

The common productivity growth has two components: short-run productivity shock εa,t+1

and long-run shock εx,t+1. Short-run shocks affect contemporaneous output directly but have

no effect on future productivity growth. Long-run shocks does not affect current output but

carry news about future productivity growth rates. We set the log standard deviations of

both shocks, σa and σx, to be constant over time.

By assumption, there are n̄ generations of firms based on their information precision.

Denote At and Kt as the vectors of firm generation-wide productivities and capital stocks,

that is, At = {An,t}n̄n=1 and Kt = {Kn,t}n̄n=1. The aggregate production can be specified as

the solution to the following optimal resource allocation problem:

F (At,Kt) = max
N1,t,N2,t,··· ,Nn̄,t

n̄∑
n=1

Kα
n,t(An,tNn,t)

1−α

subject to
n̄∑
n=1

Nn,t = 1

(13)
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Despite featuring substantial heterogeneity across firms, the production side of our model

can be summarized by the production of a representative firm with the production function

Yt = F (At,Kt), where the law of motion for productivity are characterized by equations (8)-

(10), and the dynamics capital stocks of firm generations are given by equations (14)-(16),

to be discussed in the next subsection.

3.2.3 Firm dynamics

News firms are created by physical investment goods. Upon creation, they belong to the

youngest generation (n = 1). For parsimony, we assume that all firms are subject to the

same exit rate, δ. We use Kn,t to denote the total measure of firms in generation n at time

t. In each period, the surviving firms of generation n(n < n̄), (1− δ)Kn,t, become the next

generation, n+ 1, with a constant probability φ. Under this assumption, the law of motion

of the mass of mature firms, Kn̄, is

Kn̄,t+1 = (1− δ)Kn̄,t + (1− δ)φKn̄−1,t, (14)

The capital dynamics for middle firm generation (1 < n < n̄) follow:

Kn,t+1 = (1− δ)(1− φ)Kn,t + (1− δ)φKn−1,t, (15)

The capital dynamics of the youngest firm generation follow:

K1,t+1 = (1− δ)(1− φ)K1,t + It, (16)

where It is investment.

To complete the model, we also have consumption plus investment equals total output:

Ct + It = Yt. (17)

3.2.4 Equilibrium conditions

Standard welfare theorems applies in our economy, we can construct equilibrium prices

and quantities from the solution to a planner’s problem. The stochastic discount factor Λt,t+1

can be written as

Λt,t+1 = β(
Ct+1

Ct
)−

1
ψ

(
Vt+1

Et[V
1−γ
t+1 ]

1
1−γ

) 1
ψ
−γ

(18)
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Given the equilibrium quantities, we can show that the cum-dividend price of mature firms,

pKn̄,t, satisfy:

pKn̄,t = αA1−α
n̄,t (

Kn̄,t

Nn̄,t

)α−1 + (1− δ)Et[Λt,t+1pKn̄,t+1] (19)

And the cum-dividend price of adolescent firms n < n̄, pKn,t satisfy:

pKn,t = αA1−α
n,t (

Kn,t

Nn,t

)α−1 + (1− δ){(1− φ)Et[Λt,t+1pKn,t+1] + φEt[Λt,t+1pKn+1,t+1]} (20)

Equation (19) implies that the cum-dividends marginal value of mature firms equals the

current period marginal product of capital, A1−α
n̄,t (Kn̄,t

Nn̄,t
)α−1, and the expected continuation

value of future payoffs, pKn̄,t+1, adjusted for the survival probability 1− δ.
According to equation (20), the value of adolescent firms (generation n < n̄) is deter-

mined by the marginal product of its capital in the current period, αA1−α
n,t (Kn,t

Nn,t
)α−1, plus the

continuation value of their future payoffs. Conditional on surviving to the next period with

probability 1 − δ, generation n firms become next generation with probability φ and pay

pKn+1,t+1 going forward. With probability 1 − φ, they remain in the same generation and

pay the continuation value of pKn,t+1.

The optimal investment should satisfy the Euler equation:

1 = Et[Λt,t+1pK1,t+1] (21)

The left-hand side of equation (21) is the marginal cost of investment and the right-hand

side is the marginal benefit of investment.

3.3 Asset returns

Given the equilibrium conditions, we can compute the asset returns for each firm group.

Denote qKn,t as the ex-dividend price of Kn,t, that satisfy:

qKn,t = Et[Λt,t+1pKn,t+1], forn = 1, 2, ..., n̄. (22)

The return of capital takes the form:

RKn,t+1 =
A1−α
n,t (Kn,t

Nn,t
)α−1 + (1− δ)(1− φ)qKn,t+1 + (1− δ)φqKn+1,t+1

qKn,t
,

RKn̄,t+1 =
αA1−α

n̄,t (Kn̄,t
Nn̄,t

)α−1 + (1− δ)qKn̄,t+1

qKn̄,t
.
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The key mechanism that generates the return spread between old versus young capital is

the difference in the marginal production of capitals’ exposures to the common productivity

shock. As we have discussed before, mature firms with more information can take better

advantage of aggregate technological progress, their productivity have higher exposure to

aggregate shocks. Therefore, old firms’ marginal product of capital, αA1−α
n̄,t (Kn̄,t

Nn̄,t
)α−1, are

more sensitive to common productivity shocks and their expected return is higher.

The market return can be computed as a weighted average of the returns on different

capital vintages in this economy:

Rm,t+1 =
n̄∑
n=1

qKn,tKn,t∑n̄
n=1 qKn,tKn,t

RKn,t+1

4 Empirical evidence on the learning mechanism

In our quantitative analysis, we do not directly specify the micro parameters σ and

{{τu,t}tu=0}∞t=0. Rather we calibrate the macro parameters, the contemporaneous exposure

λn and the learning rate ρn,s, for each firm generation n. In this section, we provide the

empirical procedure to estimate these parameters from the difference in the exposure of

young and old firms with respect to aggregate productivity shocks. The empirical evidence

not only directly supports the learning mechanism that we propose, but also help us to pin

down the key learning parameters for a quantitative study of the model.

4.1 Firm-level productivity estimation

Data and firm-level productivity estimation are constructed as follows. We consider

publicly traded companies on U.S stock exchanges listed in both the annual Compustat and

the CRSP (Center for Research in Security Prices) databases for the period 1950-2016. In

what follows, we report the annual Compustat items in parentheses and defined industry at

the level of two-digit SIC codes. The output, or value added, of firm i in industry j at time

t, yi,j,t, is calculated as sales (sale) minus the cost of goods sold (cogs) and is deflated by

the aggregate gross domestic product (GDP) deflator from the U.S. National Income and

Product Accounts (NIPA). We measure the capital stock of the firm, ki,j,t, as the total book

value of assets (at) minus current assets (act). This allows us to exclude cash and other liquid

assets that may not be appropriate components of physical capital. We use the number of

employees in a firm (emp) to proxy for its labor inputs, ni,j,t, because data for total hours

worked are not available.

We assume that the production function at the firm level is Cobb-Douglas and allow the
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parameters of the production function to be industry-specific:

yi,j,t = Ai,j,tk
α1,j

i,j,t n
α2,j

i,j,t ,

where Ai,j,t is the firm-specific productivity level at time t. This is consistent with our

original specification because the observed physical capital stock, ki,j,t, corresponds to the

mass of production units owned by the firm.

We estimate the industry-specific capital share, α1,j, and labor share, α2,j, using the

dynamic error component model adopted in Blundell and Bond (2000) to correct for endo-

geneity. Details are provided in Appendix D.6 . Given the industry-level estimates for α̂1,j

and α̂2,j, the estimated log productivity of firm i is computed as follows:

ln Âi,j,t = ln yi,j,t − α̂1,j · ln ki,j,t − α̂2,j · lnni,j,t.

We allow for α̂1,j + α̂2,j 6= 1, but our results hold also when we impose constant returns to

scale in the estimation, that is, α̂1,j + α̂2,j = 1.

We use the multi-factor productivity index for the private non-farm business sector from

the BLS as the measure of aggregate productivity.

4.2 Firms’ exposure to aggregate shocks

To pin down the contemporaneous exposure λi, we estimate the exposure of firms’

productivity with respect to the aggregate productivity by different capital age groups

(n = 1, 2, ..., n̄) using the following regression:

∆ lnAi,j,t = ξ0,i + ξ1∆ ln Āt + εi,j,t

where ξ0,i controls for the firm-specific fixed effect, and ∆ ln Āt is the growth rate of aggregate

productivity as measured by the U.S. Bureau of Labor Statistics (BLS).

Table 3 Panel A shows the regression result within different capital age groups. The

productivity exposure increase with capital age, which supports our model assumption that

younger age firms have less information about their exposure. To directly map data to our

model parameters, we need to do some normalization. Specifically, we divide group specific

exposures by whole sample exposure. The model counter-part is the generation specific

exposures normalized by the steady state capital share weighted exposure λn
(
∑n̄
n=1Kn,ssλn)/Kss

.

To maintain parsimony, we assume λn follows a exponentially increasing pattern from

young to mature generation: λn = λn−1, n = 1, 2, ..., n̄. In the model, we normalize the

17



Table 3. Exposure to Aggregate Productivity Shocks and Learning Rate

This table shows aggregate exposures and learning rates by age groups. Panel A reports the aggregate
productivity exposures of five firm groups sorted on firm’s capital age. All estimate are based on the
following regression:

∆ lnAi,j,t = ξ0i + ξ1∆ lnAt +Xi,j,t + ε̃i,j,t,

where Xi,j,t are control variables for firms’ fundamentals, including size, book-to-market ratio, investment
rate, and profitability. The exposures are normalized so that the firm exposure of the whole sample regression
is equal to 1. Regressions (1) and (2) differ in that they use two alternative estimation methods in the first
stage to estimate ∆ lnAi,j,t. Regressions (1) is based on the fixed effect procedure, whereas Regressions
(2) is based on the dynamic error component method of Blundell and Bond (2000). These estimation
methods are describe in Appendix D.6 , following Ai, Croce, and Li (2012). Standard errors are adjusted for
heteroscedasticity and clustered at the firm level. In the last row (”Model”), we report the model-implied
ξ1 based on our calibrated parameters, λ and φ. Panel B reports learning rates from the persistence of
co-integration residuals. The ratio between the productivity of young firms (n < n̄) and that of the mature
firms (n = n̄) denotes

χn,t+1 = lnAn̄,t+1 − lnAn,t+1

where n = 1, 2, · · · , 4 refers to the capital age sorted group from Y to 4, respectively, and n̄ refers to the
group O. For each n, we estimate the autocorrelation ρn,s by running a AR(1) regression of χn,t. Standard
errors are estimated by Newey-West correction. We report t-statistics in parentheses, and use *, **, and ***
to indicate significance at the 1, 5, and 10% levels.

Y 2 3 4 O
ξ1 Panel A: Aggregate Exposures
(1) 0.50 0.63*** 0.97*** 0.97*** 1.47***
[t] 1.03 3.57 8.91 3.65 3.88
(2) 0.67* 0.58*** 1.00*** 1.18*** 1.82***
[t] 1.84 5.58 4.92 5.40 5.44
Model 0.72 0.85 1.00 1.17 1.38
ρn,s Panel B: Learning Rates
(1) 0.88*** 0.81*** 0.80*** 0.58***
[t] 12.91 8.16 8.40 3.84
(2) 0.85*** 0.86*** 0.75*** 0.53***
[t] 9.22 11.75 7.41 4.04
Model 0.85 0.72 0.61 0.52
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exposure of youngest group to be 1, thus λ1 = 1. And we calibrate λ = 1.18 such that the

model implied normalized exposure broadly match the pattern in data. Panel A of Table 3

shows the normalized exposure in model and data are closely in line with each other.

4.3 Estimation of the learning rate

In our model, the learning rate parameters ρn,s is the persistence of co-integration residual

χn,t. Thus, we identify these parameters through the autocorrelation of the log productivity

differences between the old capital age group n̄ and young age group n < n̄. Specifically, we

define

χn,t = ln An̄,t − ln An,t, n = 1, ..., n̄− 1,

where n indicates the capital age sorted group and An,t is the value weighted average pro-

ductivity of firms in group n. For each n, we estimate the autocorrelation ρn,s by running a

AR(1) regression of χn,t.

Since 1− ρn,s is the learning rate on exposure in the past and mature generations learn

faster, we expect ρn,s to decrease from young to mature generation. Panel B of Table 3 reports

the estimated autocorrelation of capital age groups 1-4. Indeed, there is a decreasing pattern

from young to old firms. This directly support the learning mechanism of our model. Again,

to maintain parsimony, we assume ρn,s follows a exponentially decay pattern from young to

mature generation: ρn,s = ρns (In the model, the oldest generation has perfect information

on their exposure. thus, ρn̄,s = 0). We calibrate the quarterly learning parameter ρs = 0.96

such that the model implied annual autocorrelations match the pattern in the data.

5 Quantitative model implications

In this section, we calibrate our model at the quarterly frequency and evaluate its ability

to replicate key moments of both macroeconomic quantities and asset prices at the aggregate

level. More importantly, we investigate its performance in terms of quantitatively accounting

for capital age premium in the cross-section. For macroeconomic quantities, we focus on a

long sample of U.S. annual data from 1930 to 2016. All macroeconomic variables are real

and per capita. Consumption, output and physical investment data are from the Bureau

of Economic Analysis (BEA). For the purpose of cross-sectional analyses, we make use of

several data sources at the micro-level, including (1) firm level balance sheet data in the

CRSP/Compustat Merged Fundamentals Annual Files, and (2) monthly stock returns from

CRSP. Appendix D provides more details on our data sources and constructions.
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Table 4 Calibration Parameters

This table reports a summary of parameters for our quarterly calibrations

Preference parameters

Risk aversion γ 10
Intertemporal elasticity of substituion ψ 2
Discount factor β 0.997

Technology parameters

Capital share α 0.3
Depreciation rate of capital δ 0.03

Learning parameters

Capital stage transition rate φ 0.08
Productivity exposure of mature generation λ∗ 1.91
Cointegration speed ρs 0.96

Common productivity parameters

Average growth rate λ∗µ 0.0021
Volatility of short-run risk (1− α)λ∗ exp(σa) 0.021
Relative volatility of long-run risk exp(σx)/ exp(σa) 0.12
Autocorrelation of expected growth ρx 0.946

5.1 Calibration

We calibrate our model at the quarterly frequency and present the parameters in Table 4.

We choose the relative risk aversion γ = 10 and the intertemporal elasticity of substitution

ψ = 2, in line with the long-run risks literature, such as Bansal and Yaron (2004). We set the

discount factor β = 0.997 to match the level of risk free rate. The capital share parameter

α = 0.3, and the quarterly depreciate rate of physical capital δk = 0.03, consistent with the

standard real business cycles literature Kydland and Prescott (1982).

Our calibration of the parameters of the aggregate productivity shocks is standard in

the long-run productivity risk literature. We calibrate µ and σa to match the mean and the

volatility, respectively, of output growth in the U.S. economy in our sample period, 1929-

2015. We set relative volatility exp(σx − σa) = 0.12 and autocorrelation of long-run risk

ρx = 0.946, in the same spirit of Croce (2014).

In our model, there are three parameters intimately related to our key learning mech-

anism. The parameter φ is the rate of transition to the next capital age group; and the

parameter λ∗ governs the exposure of mature firms to contemporaneous aggregate shocks;

and the persistence of the cointegration residual ρs governs the speed of learning for young

firms with imprecise information about their exposure to comment productivity shocks. We
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Table 5 Capital Age and Capital Share

This table reports the average capital age and capital share of each firm group in the data and model. Capital
share is defined as time series average of group PPENT share ( PPENTi∑5

i=1 PPENTi
). Detailed calculation of model

counter-part is described in Appendix C

Panel A: Capital Age

Y 2 3 4 O

Data 3.44 5.39 6.59 8.48 14.2
Model 2.26 4.52 6.78 9.04 16.73

Panel B: Capital Share

Data 0.12 0.19 0.25 0.26 0.19
Model 0.29 0.21 0.15 0.1 0.25

choose the parameter φ to broadly match steady state distribution of capital age and capital

share. As we show in Appendix C, given capital depreciation rate δ, both the capital share

and average capital age across different capital age groups are functions of the transition

rate parameter φ. As shown in Table 5, our calibration of φ = 0.08 generates the capital age

and capital share profile across age groups to be broadly consistent with the data. We have

already provide supportive evidence and calibration details about the other two learning

parameters λ∗ and ρs in previous Section 4.

In addition to our benchmark calibration, we also calibrate a RBC model with adjustment

cost and report the result for comparison. When calibrating the RBC model, we retain the

same parameter expect for three modifications. We keep 5 capital age groups but shut

down the learning channel (λi = 1 and ρi,s = 0). That is to say all firms are identical

and have perfect information. We also adjust the volatility of short run shocks to 1.69%

((1 − α) exp(σa) = 1.69%) to match the volatility of total output in the data. We increase

the subjective discount factor to 0.998 to match the level of risk-free rate. Lastly, we add

adjustment cost of investment to generate equity premium. We model the adjustment cost

as in Jermann (1998)

G(I,K) = K[α0 +
α1

1− 1/ξ
(
I

K
)1−1/ξ]

{α0, α1} are set such that in steady state G = I and GI = 1. we set the adjustment cost

parameter ξ = 2.3 to obtain a same equity premium as in our benchmark model.

21



5.2 Quantitative results

5.2.1 Aggregate moments

We now turn to the quantitative performance of the model at the aggregate level. We

solve and simulate our model at the quarterly frequency and aggregate the model-generated

data to compute annual moments.2 We show that our model is broadly consistent with the

key empirical features of macroeconomic quantities and asset prices.

Table 6 reports the key moments of macroeconomic quantities (top panel) and those of

asset returns (bottom panel) respectively, and compares them to their counterparts in the

data where available.

In terms of aggregate moments on macro quantities (top panel), our model have simi-

lar implications as the standard RBC models. In particular, our calibration features a low

volatility of consumption growth (2.73%), match the mean, volatility and autocorrelations

of output and consumption growth with the data reasonably well. The volatility of invest-

ment (6.41%) is reasonably high, though still a bit lower than the data counterpart, and

correlation between consumption and investment growth (0.80) is a little bit overshooting.

These features reflect a common issue for RBC model with adjustment cost to produce a

sizable equity premium. We can remedy this by introducing intangible capital as in Ai et al.

(2018), but as we focus on the learning mechanism and its cross-sectional implication, we

intentionally avoid introducing additional complication.

Turning the attention to the asset pricing moments (bottom panel), our model produces

a low risk free rate (0.89%) and a high equity premium (3.76%) with a leverage ratio of 2,

comparable to key empirical moments for aggregate stock market. It is worth noting that

our model is able to generate a high equity premium even without adjustment cost. Because

new capital does not fully enjoy the productivity growth, the consumption-smoothing effect

of investment is mitigated. RBC model with adjustment cost can also generate a comparable

equity premium, but with much lower investment volatility (5.04%). In addition, RBC fail

to generate any capital age spread.

5.2.2 Cross-sectional implications

In this section, we study the capital age spread at the cross-sectional level. In Table 7, we

report the average excess returns and cash flow durations across different age groups from

the model, and compare them with the data.

2We solve the model using a second-order local approximation around the steady state using the Dynare

package.
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Table 6 Aggregate Moments

This table reports macro quantities and asset prices in the model and data. RBC is the real business cycle
model with adjustment cost. Panel A reports the moments of output, consumption and investment. Panel
B reports equity premium and risk-free rate. E(rm − rf ) is the levered equity premium. E(r5 − r1) is the
levered spread between capital age group 5 and group 1. We use a leverage ratio of 2

Data Benchmark RBC

Panel A: Aggregate Quantities
Average output growth E(∆y) 2.00 2.00 2.00
Volatility of output growth σ(∆y) 3.49 3.49 3.49
Volatility of consumption growth σ(∆c) 2.53 2.73 3.13
Volatility of investment σ(∆i) 16.40 6.41 5.04
Autocorrelation of output AC1(∆y) 0.45 0.53 0.42
Autocorrelation of consumption AC1(∆c) 0.49 0.67 0.46
Corr of consumption and investment corr(∆c,∆i) 0.39 0.80 0.83

Panel B: Asset Prices
Equity premium E(rm − rf ) 5.70 3.76 3.75
Risk-free rate rf 0.89 0.89 0.89
Volatility of equity return σ(rm) 17.61 2.83 4.38
Volatility of risk-free rate σ(rf ) 0.97 1.13 1.28
Capital age premium E(r5 − r1) 5.79 6.65 0

Table 7 Capital Age Premium and Cash Flow Duration

This table reports excess return and cash flow duration in the model and data. Panel A reports the average
excess return of each capital age group. Panel B reports the cash flow duration.

Panel A: Excess Return

Y 2 3 4 O OMY

Data 3.32 6.50 8.34 8.19 9.11 5.79
Model 0.24 2.92 4.78 6.11 6.89 6.65

Panel B: Cash Flow Duration

Data 21.13 20.09 19.64 19.66 19.49 1.64
Model 20.95 20.68 20.57 20.51 20.46 0.49

We make several observations. First, Panel A of Table 7 reports the average excess return

of each capital age group in the data and model. We use a leverage ratio of 2 to compute

the leverage equity return. Our model is able to generate a capital age spread as large as

6.65%, which is comparable to the data. The key mechanism to generate the return spread

is as follows: Mature firms have better information on their exposure to common shock, so

they have better allocation of resources. This has an amplification that makes their marginal

product of capital more exposed to common productivity shocks.

Second, Panel B of Table 7 shows the cash flow duration of each capital age group in the
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data and model. Appendix ?? provides detailed construction of cash flow duration. In the

data, young capital age firms have higher cash flow duration than old capital age firms. Our

model generate the same monotonic pattern. Intuitively, firms in the young generation have

on average lower productivity, so they also have lower dividend payout. As they grow into

mature firms, they acquire better information and have better resource allocation, hence

their productivity and dividend payout increase. Therefore, young firms have low cash flow

at the short end and high cash flow at the far end. While for mature firms, the cash flow is

evenly distributed.

5.2.3 Impulse response functions

To better understand the above results, we plot the impulse response functions with

respect to a one-standard-deviation of short-run and long-run productivity shocks in Figure

1 and Figure 2, respectively. The impulse response of our benchmark model is plotted with

solid black line and the impulse response of RBC model is plotted with red dashed line for

comparison.

The response of consumption growth and investments to shock-run shocks are similar

in benchmark model and RBC model. Upon the arrival of a positive shock-run shock,

consumption growth increase temporarily. Investment to capital ratio also increase and

slowly decay.

However, we observe that the impulse responses of investment and consumption to long-

run shocks are very different in two models. Notice that, in the RBC model, investment

responds positively to news shocks. With an IES of 2, upon the arrival of positive news

about future productivity shocks, the substitution effect dominates, investment rises and

since the productivity news has not materialized, consumption drops temporarily.

In contrast, in our learning model, investment responds negatively to positive news

shocks. Over time, as news about future productivity materializes, investment gradually

goes up. Intuitively, a positive news shock does not increase current period productivity,

and its effect realizes slowly over time. On one hand, the substitution effect is moderate.

New investment builds young capital firms, which cannot take full advantage of the rise in

productivity. Since there is no adjustment cost, households will find it optimal to invest

later when young capital firms gradually adopt the productivity growth. On the other hand,

the income effect is strong because old capital firms immediately benefit from the positive

productivity shock. As a result, investment temporarily drops and consumption increases.

With IES > 1, news about future consumption growth requires a significant premium.
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Figure 1. Impulse Response Functions for Short-Run Shock

This figure shows deviation from the steady state upon the realization of a positive short-
run shock. The solid black line is the impulse response function of our benchmark model
and the dashed red line is the RBC model with adjustment cost. Returns are not levered
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Long-run risks is the main source of risk premium. The market return response positively

to productivity shocks in both models. Without adjustment cost, the marginal q of young

firms always equals 1 in our benchmark model. However, since we can not directly create

old capital firms. The marginal q of old capital firms will fluctuate with business cycle. This

explains why in our benchmark model, though there are no investment frictions, market

return also response to productivity shocks.

Our main focus is the different response of excess return on mature firms (group 5) and

young firms (group 1). In our benchmark model, the response of return on mature firms

to productivity shock is significantly larger than that of young firms. This contributes to

generate a capital age spread. When a positive productivity shock arrives, mature firms know

how to allocate their resources efficiently and better utilize the rise in productivity. However,

due to resource mis-allocation, young firms could only benefit a little from productivity
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Figure 2. Impulse Response Functions for Long-Run Shock

This figure shows deviation from the steady state upon the realization of a positive long-
run shock. The solid black line is the impulse response function of our benchmark model
and the dashed red line is the RBC model with adjustment cost. Returns are not levered.
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growth. Mature firms’ marginal product of capital is more sensitive to common shocks than

young firms. Therefore, mature firms’ return also response more to shocks than young firms.

In RBC model, because all firms are identical, the return spread is always 0.

6 Testable implications of the learning mechanism

In this section, we examine the empirical evidence that differentiates our explanation

from other alternative economic channels for the capital age premium. That is, our learn-

ing mechanism, compared with the technology adoption mechanism in Lin, Palazzo, and

Yang (2017), explains for different capital ages with different information precisions about

exposures to aggregate TFP shocks. Moreover, we test testable implications of the learning
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mechanism in the following subsections.

6.1 Alternative explanations

Lin, Palazzo, and Yang (2017) provide empirical evidence of capital age premium and

propose a risk-based story, where the driving source is the technology adoption shock (TAS),

to interpret a positive relationship between the firm’s capital age and future stock returns

in the cross-section. As a result, old capital age firms face higher exposures to the TAS

than young capital age firms, and thus carry higher returns as the risk compensation. On

the other hand, we propose an alternative learning story to drive the capital age premium.

The key driving force in our learning mechanism relies on the cross-sectional difference in

information precisions about exposures to aggregate TFP shocks. We find empirical evidence

that the capital age premium remains existing for firms in industries with low exposures to

TAS. The details to construct exposures to TAS are as follows. First, we calculate cross-

correlations to the TAS across industries. For each industry, we compute the ±4-quarter

cross-correlation between industry-level output (i.e., sales) growth and the TAS, which is

defined as the log difference in the number of new technology standards, following Lin,

Palazzo, and Yang (2017). Second, the summation of absolute ±4-quarter cross-correlations

is attained, and we assign the summation to the corresponding industry as indicator of TAS

exposures. This procedure generates 30 industry-level indicators. Based on these indicators,

we classify industries into high, middle, and low technology exposures, respectively. In Panel

A of Table 8 we pool industries with high and middle exposures to TAS and implement

univariate portfolio sort on capital age relative to their industry peers. In Panel B of Table 8

we sort on capital age within industry for firms in industries with low technology exposures.

To assure the capital age-return relation, we form a long-short portfolio that takes a long

position in the highest quintile and a short position in the lowest quintile portfolio in both

Panels.

Table 8 reports the average annualized excess returns in five quintile portfolios and long-

short portfolio in Panel A and B. The portfolio returns are economically large, ranging

from 2.25% to 10.32% in Panel A and from 4.66% to 9.38% in Panel B, and the long-short

portfolios are statistically significant at least at 5% level. The capital age premium is robust

to industries with low exposures to TAS, although the return spread is smaller in the low

exposures industries (Panel B) than that in the high and middle group (Panel A). As the

output of firms in industries with low TAS exposures are less affected by TAS risk, the

statistically significance of OMY portfolio in Panel B implies that the technology adoption

mechanism alone cannot fully account for the capital age premium. To fill the gap, we focus
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Table 8. Portfolio Sorting Conditional on Exposures to Technology Adoption
Shock

This table shows asset pricing test for five portfolios sorted on capital age conditional on industry-level
exposures to TAS. First, for each industry, we compute the ±4-quarter correlation between industry-level
output (sales) growth and the technology adoption shock, which is defined as the log difference in the
number of new technology standards. Second, the summation of absolute ±4-quarter cross-correlations is
attained, and we assign the summation to the corresponding industry as indicator of TAS exposures. This
procedure generates 30 industry-level indicators. Based on these indicators, We classify industries into high,
middle, and low technology exposures, respectively. We report five portfolios sorted on capital age relative
to their industry peers for industries with high and middle exposures in Panel A and for industries with low
exposures in Panel B, where we use the Fama-French 30 industry classifications and rebalence portfolios at
the beginning of January, April, July, and October. The results use monthly data, where the sample period
is July 1979 to December 2016 and excludes financial, utility, and and R&D intensive industries from the
analysis. We report average excess returns over the risk-free rate E[R]-Rf. Standard errors are estimated
by using Newey-West correction with ***, **, and * indicate significance at the 1, 5, and 10% levels. We
include t-statistics in parentheses and annualize portfolio returns by multiplying 12.

Y 2 3 4 O OMY
Panel A: Industries with High & Medium TAS Exposures

E[R] - Rf (%) 2.25 5.90* 7.67*** 8.02*** 10.32*** 8.08***
[t] 0.61 1.91 2.82 3.19 4.27 3.55

Panel B: Industries with Low TAS Exposures
E[R] - Rf (%) 4.66 8.37*** 10.12*** 8.93*** 9.38*** 4.73**
[t] 1.18 2.75 3.82 3.70 3.68 2.17

on a learning mechanism of firm specific productivity exposure and reconcile the co-existence

of capital age premium across different exposures to TAS, as our main contribution. In deed,

both channels can be simultaneous in play, but our channel is qualitatively important to

capture the essence of capital age premium.

6.2 Productivity shocks and payouts

The key implication of the learning mechanism in our model is the response of payouts

to aggregate productivity shocks. In this subsection, we directly test this implication of

our model using evidence on macroeconomic quantities. We show that firm’s payout has a

positive exposure to long-run shocks. The cross-sectional difference in productivity exposures

increases in firms’ capital ages.

We proceed as follows. First, we measure payout using firm’s operating income before

depreciation (xintq) net of interest expenses (txtq), income taxes (oibdpq), and common

stock dividends (dvy − dvpq), following Croce, Marchuk, and Schlag (2018). Because our

model abstracts away from leverage and capital structure decisions, payouts in our model

cannot be directly compared to stock market dividends. We therefore use the model to guide

our empirical measurement. Given the data limitation of payout disclosure in quarterly
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Compustat at early periods, we start our sample here from 1984:Q2. To maximize sample

length, our data include observations through 2016:Q1.

In the second step, we estimate the following panel regression:

Zi,t = β0,i + βsrrεa,t + βlrrεx,t + ρZi,t−1 + βxxt−1 + Controlsi,t−1 + residt, (23)

where Zi,t denotes firm i’s payout (income-to-sales) ratio, εa,t and εx,t denote short-run and

long-run shocks, respectively. Detailed in constructions for εa,t and εx,t refer to Ai, Croce,

Diercks, and Li (2018). Controls variables for firm’s fundamentals include size and book-to-

market ratio. We divided our variable of interest by sales for three reasons as follows. First,

since dividends could be negative, we cannot just focus on growth rates. Second, This is

a common way to detrend our variable. Third, according to the model, it does not affect

our ability to identify the sensitivity of our variable to long-run shocks, as sales is nearly

invariant upon the arrival of pure long-run shocks.

In the model, a linear approximation of the equilibrium dividend processes suggests the

dependence of payout on both contemporaneously short- and long- productivity shocks and

predetermined variables. For the sake of parsimony, we use the lagged values of payout ratio

to capture the role of the endogenous state variables (i.e., capital shocks) to avoid additional

measurement errors. Under the null of the model, this is an innocuous assumption. We

also control for the predetermined value of the long-run component, xt−1, size and book-to-

market ratio for firms’ fundamentals, and firm fixed effects. Our main findings are reported

in Table 9. The responses of firm’s payout to long-run risks are positive across portfolios.

More importantly, we can observe an upward sloping pattern on coefficients for the long-

run productivity shocks from young to old capital age portfolio. That is, firms’ payouts in

the highest quintile portfolio face higher exposure to the long-run productivity shocks than

those in the lowest. In addition, we also observe an upward sloping pattern on coefficients

for the short-run productivity shocks from young to old capital age portfolio. To sum up,

payout features a positive response to both short- and long-run productivity shocks, which

is perfectly consistent with our model implication.

7 Conclusion

In this paper we argue that parameter learning is a potential key determinants of the

cross-section of stock returns. We develop a production-based general equilibrium asset

pricing model and its key mechanism is that individual firms have imperfect information

about their productivity and have to learn about their exposure to aggregate productivity
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Table 9. Payout Exposures

This table shows payout exposures to short-run and long-run productivity shocks by capital age sorted
quintile portfolios. All estimates are based on the following panel regression:

Zi,t = β0,i + βsrrεa,t + βlrrεx,t + ρZi,t−1 + βxxt−1 + Controlsi,t−1 + residt,

where Zi,t denotes firm i’s payout (income-to-sales) ratio, εa,t and εx,t denote short- and long-run shocks,
respectively. Controls variables for firm’s fundamentals include size and book-to-market ratio. We further
control for the predetermined value of the long-run component, xt−1, and lagged payout ratio Zi,t−1. Stan-
dard errors are adjusted for heteroscedasticity and clustered at the firm level. We report t-statistics in
parentheses, and use *, **, and *** to indicate significance at the 1, 5, and 10% levels.

Payout Exposures
Variables Y 2 3 4 O
εa,t -0.01 0.18** 0.09 0.15 0.58***
[t] -0.08 2.20 0.77 0.87 2.97
εx,t 0.37*** 0.76*** 0.91*** 0.81*** 1.04***
[t] 4.62 9.80 7.86 4.97 5.67
Zt−1 0.36*** 0.27*** 0.18*** 0.15*** 0.22***
[t] 65.01 50.48 32.89 29.89 42.00
xt−1 0.19* 0.30*** 0.23 0.34* 0.91***
[t] 1.88 3.11 1.59 1.73 4.07
lagged log ME 2.55*** 2.36*** 3.96*** 4.44*** 5.71***
[t] 11.30 9.64 9.80 7.22 8.30
lagged B/M -0.32*** -0.91*** -0.98*** -2.08*** -0.89***
[t] -2.96 -8.37 -6.19 -9.14 -3.65

Observations 33,719 40,568 43,080 44,598 44,267
Firm FE Yes Yes Yes Yes Yes
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shock over time. We show this model framework can provide a unified explanation of a

wide set of empirical facts: old capital firms (1) have higher capital allocation efficiency; (2)

are more exposed to aggregate productivity shocks and hence earn higher expected returns,

which we call it the capital age premium; (3) have shorter cash-flow duration, as compared

with young capital firms.

A Aggregation with learning

A.1 Static learning

To prove Lemma 1, first we need to derive the optimal resource allocation.

Lemma 3. 1. The resource allocation satisfy:

ni =
Es(A

(1−α)ν
i )

1
1−ν∫

Es(A
(1−α)ν
i )

1
1−ν di

N,

ki =
Es(A

(1−α)ν
i )

1
1−ν∫

Es(A
(1−α)ν
i )

1
1−ν di

K,

(A1)

where K =
∫
kidi is total capital and N =

∫
nidi is total labor.

2. The capital rent and wage rate can be written as:

R = αA1−αKα−1N (1−α),

W = (1− α)A1−αKαN−α,
(A2)

where A =
[∫

Es(A
(1−α)ν
i )

1
1−ν di

] 1−ν
(1−α)ν

is the total productivity.

Proof. The profit maximization problem of the firm is

max
ki,ni

Es
(
pik

α
i (Aini)

1−α)−Wni.

The first order condition of the above problem is

αEs(piA
1−α
i )kα−1

i n1−α
i = R,

(1− α)Es(piA
1−α
i )kαi n

−α
i = W.

The market price of intermediate good yi is

pi =
∂Y

∂yi
= (

yi
Y

)ν−1.
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Together, this imply that for any i and i′

ki
ki′

=
ni
ni′

=
Es

(
A

(1−α)ν
i

) 1
1−ν

Es

(
A

(1−α)ν
i′

) 1
1−ν

.

Denote K as total capital and N as total labor, we get equation (A1). The output of a

typical firm is

yi = A1−α
i

Es(A
(1−α)ν
i )

1
1−ν∫

Es(A
(1−α)ν
i )

1
1−ν di

KαN1−α.

Total output of the sector is

Y = (

∫
yνi di)

1
ν =


∫
Es(A

(1−α)ν
i )

ν
1−νA

(1−α)ν
i[∫

Es(A
(1−α)ν
i )

1
1−ν di

]ν di


1
ν

KαN1−α

=

[∫
Es(A

(1−α)ν
i )

1
1−ν di

] 1−ν
ν

KαN1−α.

Define total productivity as A =
[∫

Es(A
(1−α)ν
i )

1
1−ν di

] 1−ν
(1−α)ν

, and plug into the profit function

and FOC, we have equation (A2).

Proof of Lemma 1. The posterior distribution of βi can be derived as

V ars[β] =
1

∆a

1
1
σ2 + 1

τ2

,

Es[β] =
1

σ2 + τ 2
[τ 2µ+ σ2s].

Then we can compute the expectation term in aggregate productivity as

Es(A
(1−α)ν
i )

1
1−ν = exp

{[
(1− α)ν

1

σ2 + τ 2
[τ 2µ+ σ2s] +

1

2
(1− α)2ν2 σ2τ 2

σ2 + τ 2

]
1

1− ν
∆a

}
.

As signal s follows a normal distribution with mean µ and variance 1
∆a

[σ2 + τ 2] across firms,∫
Es(A

(1−α)ν
i )

1
1−ν di = exp

{[
(1− α)νµ+

1

2
(1− α)2ν2(

σ2τ 2

σ2 + τ 2
+

1

1− ν
σ4

σ2 + τ 2
)

]
1

1− ν
∆a

}
.
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The aggregate productivity is

A1−α =

[∫
Es(A

(1−α)ν
i )

1
1−ν di

] 1−ν
ν

= exp

{[
(1− α)µ+

1

2
(1− α)2ν(

σ2τ 2

σ2 + τ 2
+

1

1− ν
σ4

σ2 + τ 2
)

]
∆a

}
.

Under the normalization condition µ = 1− 1
2
(1− α)νσ2, the aggregate productivity can be

rewritten as

lnA = λ∆a =

[
1 +

1

2
(1− α)

ν2

1− ν
σ4

σ2 + τ 2

]
∆a.

Lemma 4. In static setup, the realized log MPK dispersion (cross-sectional variance) follows:

V ar [log(MPKi)− log(MPK)] = (1− α)2ν2 σ2τ 2

σ2 + τ 2
∆a.

Proof. The realized marginal product of capital is

MPKi =
A

(1−α)ν
i

Es(A
(1−α)ν
i )

A1−α(
N

K
)1−α.

The variance of realized log MPK can be computed as

V ar [log(MPKi)− log(MPK)] = var
[
log(A

(1−α)ν
i )− log(Es(A

(1−α)ν
i ))

]
=V ar

[
(1− α)νβi∆a− [(1− α)ν

1

σ2 + τ 2
[τ 2µ+ σ2s] +

1

2
(1− α)2ν2 σ2τ 2

σ2 + τ 2
]∆a

]
=V ar

[
[(1− α)νβi

τ 2

σ2 + τ 2
− (1− α)ν

σ2

σ2 + τ 2
εi]∆a

]
=(1− α)2ν2 σ2τ 2

σ2 + τ 2
∆a.

A.2 Dynamic learning

In the dynamic setup, firm i productivity lnAi,t+1 =
∑t+1

u=0 βi,u∆au. For ease of notation,

we omit the firm index i for the following analysis. For each period t, firms receive noisy

signals about current period productivity exposure βt. Old generation firms have more

precise information. Specifically, mature firms (generation n̄) learn perfect information and

new firms (generation 1) learn no information. Firms also receive signals about all past

productivity exposures. We use the first subscript u to denote the timing of productivity
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exposure and the second subscript t to denote the timing of signals. The signal follows:

su,t = βu + εu,t,

with εu,t ∼ N(0, 1
∆au

τ 2
u,t). To summarize, each period t, mature firms receive signal st,t which

perfectly reveals βt, while young firms receive a set of noisy signals {su,t|u ≤ t} on current

and past exposure {βu|u < t}.
If the sequence of signals {su,u, su,u+1, · · · , su,t+1} on βu for young generation n satisfy:

λn = 1 +
1

2
(1− α)

ν2

1− ν
τ−2
t+1,t+1/σ

−2

σ−2 + τ−2
t+1,t+1

, (A3)

1

σ−2 +
∑t+1

v=u τ
−2
u,v

= ρn,s
1

σ−2 +
∑t

v=u τ
−2
u,v

for u < t+ 1, (A4)

then we have the recursive representation of lemma 2.

Equation (A3) specifies the relationship between contemporaneous productivity exposure

and signal precision about current period idiosyncratic beta. Equation (A4) specifies the

learning rate on past beta. 1
σ−2+

∑t+1
v=u τ

−2
u,v

relates to the posterior variance of βu. Equation

(A4) states that each period, the decay rate of posterior variance is ρn,s. We can also

manipulate the equation to have:

τ−2
u,t+1

σ−2 +
∑t+1

v=u τ
−2
u,v

= 1− ρn,s.

That is to say, precision wise, firms learn a fixed proportion 1− ρn,s of information on past

productivity.

Proof of lemma 2. At period t+ 1, after receiving a sequence of signals, the posterior distri-

bution of βu is:

N

(
1

σ−2 +
∑t+1

v=u τ
−2
u,v

[σ−2µ+
t+1∑
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)
.

From the static case, the aggregate productivity can be computed as

A1−α
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.
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With normalization condition µ = 1 − 1
2
(1 − α)νσ2, the aggregate productivity can be

rewritten as

lnAt+1 =
t+1∑
u=0

λ(τu)∆au =
t+1∑
u=0

[
1 +

1

2
(1− α)

ν2

1− ν
σ2
∑t+1

v=u τ
−2
u,v

σ−2 +
∑t+1

v=u τ
−2
u,v

]
∆au.

For mature generation n̄, since they have perfect signal each period, τt+1,t+1 = 0, their

productivity growth follows:

lnAn̄,t+1 − lnAn̄,t = λ∗∆at+1.

Denote χn,t+1 as the productivity difference between mature generation and young generation

(n < n̄). With equation A3, we have:

χn,t+1 = lnAn̄,t+1 − lnAn,t+1 =
t∑

u=0

1

2
(1− α)

ν2

1− ν
1

σ−2 +
∑t+1

v=u τ
−2
u,v

∆au + (λ∗ − λn)∆at+1.

Use equation A4, we have:

χn,t+1 = ρn,sχn,t + (λ∗ − λn)∆at+1.

The productivity growth of young generation takes the form:

lnAn,t+1 − lnAn,t =
t∑

u=0

1

2
(1− α)

ν2

1− ν
τ−2
u,t+1

(σ−2 +
∑t+1

v=u τ
−2
u,v)(σ

−2 +
∑t

v=u τ
−2
u,v)

∆au + λn∆at+1.

With equation A4 and the definition of χn,t, we have

lnAn,t+1 − lnAn,t = (1− ρn,s)χn,t + λn∆at+1.

Lemma 5. In the dynamic setup, the realized log MPK dispersion (cross-sectional variance)

follows:

V ar [log(MPKi)− log(MPK)] =
t∑

u=0

(1− α)2ν2 1

σ−2 + τ−2
u,u

ρt−ui,s ∆au.
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Proof. The variance of realized log MPK can be computed as

V ar [log(MPKi)− log(MPK)] = V ar
[
log(A

(1−α)ν
i )− log(Es(A

(1−α)ν
i ))

]
=

t∑
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With equation A4, the above equation can be rewritten as

var [log(MPKi)− log(MPK)] =
t∑

u=0

(1− α)2ν2 1

σ−2 + τ−2
u,u

ρt−un,s ∆au.

B Model solution

This section provide the details of model solution.

B.1 Social Planner’s Problem

The second welfare theorem applies in this economy. The social planner solves

V (At,Kt) = max
It
{(1− β)C

1− 1
ψ

t + β(Et[V (At+1,Kt+1)1−γ])
1−1/ψ
1−γ }

1
1−1/ψ ,

subject to the capital dynamics (14), (15), (16) and resource constraint (17). Define F (At,Kt)

as the aggregate output function. The FOC and the envelope condition are:

MCt = EtMVt+1VK1,t+1,

VKn,t = MCtFKn,t + (1− δ)(1− φ)EtMVt+1VKn,t+1 + (1− δ)φEtMVt+1VKn+1,t+1,

VKn̄,t = MCtFKn̄,t + (1− δ)EtMVt+1VKn̄,t+1,

where MCt = (1−β)V
1
ψ

t C
− 1
ψ

t and MVt+1 = βV
1
ψ

t V
−γ
t+1Et[V

1−γ
t+1 ]

γ− 1
ψ

1−γ . Define the cum-dividend

prices of capital to be:

pKn,t =
1

MCt
VKn,t,

and the ex-dividend prices of capital to be

qKn,t = Et[Λt,t+1pKn,t+1],
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where Λt,t+1 is the pricing kernel:

Λt,t+1 = β
MCt+1MVt+1

MCt
= β(

Ct+1

Ct
)−

1
ψ

(
Vt+1

Et[V
1−γ
t+1 ]

1
1−γ

) 1
ψ
−γ

.

We can simplify the notation to have F.O.C:

1 = qK1,t.

Prices of capital must satisfy the recursion:

pKn,t = MPKn,t + (1− δ)(1− φ)qKn,t + (1− δ)φqKn+1,t,

pKn̄,t = MPKn̄,t + (1− δ)qKn̄,t.

C Firm distribution

C.1 Capital age and capital share

The survival rate of firm is 1 − δ per quarter. Therefore, if the steady state investment

is Iss the total measure of firms with age a is Iss(1− δ)a−1. Given the transition rate φ, the

total measure of firms with age a in generation n (denoted as Mn,a) can be computed as

Mn,a = (1− δ)a−1Cn−1
a−1 (1− φ)a−nφn−1Iss, for n < n̄, if a− n < 0, Mn,a = 0,

Mn̄,a = (1− δ)a−1 −
n̄−1∑
n=1

Mn,a,

where C is the notation for combinations. The total measure of firms in group n can be

computed as

Mn =
∞∑
a=1

Mn,a =
((1− δ)φ)n−1

(1− (1− δ)(1− φ))n
Iss,

Mn̄ =
∞∑
a=1

Mn̄,a =
((1− δ)φ)n̄−1

(1− (1− δ)(1− φ))n̄−1δ
Iss.

The average capital age of firms in group i can be computed as

Kagen =
∞∑
a=1

aMn,a

Mn

=
n

1− (1− δ)(1− φ)
,

Kagen̄ =
∞∑
a=1

aMn̄,a

Mn̄

=
1

δ
+

n̄− 1

1− (1− δ)(1− φ)
.
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C.2 Cash flow duration

The Macaulay duration MDn̄ of capital Kn̄ is defined as

MDn̄,tqKn̄,t = Et

[
∞∑
j=1

jΛt,t+jDn̄,t+j

]
.

We can rewrite the duration recursively as

MDn̄,tqKn̄,t = Et[Λt,t+1Dn̄,t+1] + Et

[
Et+1

[
∞∑
j=2

jΛt,t+jDn̄,t+j

]]

= Et[Λt,t+1Dn̄,t+1] + Et

[
(1− δ)qKn̄,t+1 + Et+1

[
∞∑
j=2

(j − 1)Λt,t+jDn̄,t+j

]]
= Et[Λt,t+1(Dn̄,t+1 + (1− δ)qKn̄,t+1 + (1− δ)MDn̄,t+1qKn̄,t+1)].

Similarly, for n < n̄, the Macaulay duration MDn can be written as

MDn,tqKn,t = Et[Λt,t+1(Dn,t+1+(1−δ)((1−φ)(MDn,t+1+1)qKn,t+1+φ(MDn+1,t+1+1)qKn+1,t+1))].

Note that our capital level duration can not be mapped directly into the data. Instead

of selling the new project and pay out cash immediately, as what is assumed in the model,

real companies will keep the new project in their balance sheet and collect cash flow later.

Though the assumption in our model will generate the same valuation and return as in the

real world, the timing of cash flow will be very different, which will lead to a much shorter

cash flow duration. Therefore, in order to compute firm duration in the model, we define a

”firm” that reinvest and postpone the cash flow from investment opportunity to their later

stage. Define ϕ as the rate of investment that attributed to the existing firms, the cash flow

duration of mature firms can be computed as:

MDn̄,tqKn̄,t = Et[Λt,t+1(Dn̄,t+1 + ϕ
It
Kt

MD1,t+1 + (1− δ)(MDn̄,t+1 + 1)qKn̄,t+1)].

For n < n̄, the Macaulay duration MDn can be computed as

MDn,tqKn,t =Et[Λt,t+1(Dn,t+1 + ϕ
It
Kt

MD1,t+1

+ (1− δ)((1− φ)(MDn,t+1 + 1)qKn,t+1 + φ(MDn+1,t+1 + 1)qKn+1,t+1))].

We set ϕ to be 0.88 to broadly match the level of duration in the data.
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DData Construction

Given that the firms’s capital age is unobservable, we rely on methodologies developed in

the empirical industrial organization literature to estimate a firm’s capital age from firm-level

investment.3 We follow this stream of literature to construct capital age for U.S. publicly

listed companies.

D.1 Data

Our sample consists of firms in the intersection of quarterly Compustat and CRSP (Cen-

ter for Research in Security Prices). We obtain accounting data from Compustat and stock

returns data from CRSP. Our sample firms include those with domestic common shares

(SHRCD = 10 and 11) trading on NYSE, AMEX, and NASDAQ, except utility firms that

have SIC 4-digit (Standard Industrial Classification) codes between 4900 and 4949 and fi-

nance firms that have SIC codes between 6000 and 6999 (finance, insurance, trusts, and real

estate sectors). We also exclude R&D intensive sectors (SIC codes 283, 357, 366, 367, 382,

384, and 737) from our sample, following Brown, Fazzari, and Petersen (2009). According

Fama and French (1993), we further drop closed-end funds, trusts, American depository re-

ceipts, real estate investment trusts, and units of beneficial interest. To mitigate backfilling

bias, firms in our sample must be listed on Compustat for two years before including them in

our sample. Macroeconomic data are from the Bureau of Economic Analysis (BEA) main-

tained by the United States Department of Commerce. Patent data is from the database

provided by the authors of Kogan, Papanikolaou, Seru, and Stoffman (2017), using the Na-

tional Bureau of Economic Research (NBER) patent database and citation data, both of

which are originally extracted from the USPTO.4 The combined data are linked to the pub-

lic firm universe using the bridge file provided by NBER, allowing us to establish the full list

of patents that a firm owns at each point of time between 1926 and 2010.5 To minimize the

impact of outliers, we winsorize all variables at the 1% and 99% levels.

D.2 Capital Age

We measure capital age following the methodology in Salvanes and Tveteras (2004). We

start by defining an initial measure of firm-level capital stock (Ki,0) for firm i using net

3See Dunne (1994), Mairesse (1978), Hulten (1991), and Salvanes and Tveteras (2004).
4Data on patent-level information are primarily from the updated NBER database initially constructed

by Hall, Jaffe, and Trajtenberg (2001). Data on the patent in our sample are from Noah Stoffman’s personal
website maintained by Indiana University (https://iu.app.box.com/v/patents).

5The original database from NBER covers patent related information from 1976 to 2006.
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property plant and equipment (ppentq) and an initial measure of firm-level capital age. The

initial capital age is calculated using the ratio of accumulated depreciation and amortization

(dpactq) over current depreciation and amortization (dpq), and then we recursively construct

a measure of firm-level capital stock

Ki,t+1 = Ki,t + INi,t, (D5)

where INi,t is net investment of firm i between period t and t+1. Net investment is defined as

the difference in net property plan and equipment (ppentq) between two consecutive quarters.

We define gross investment as

INi,t = δjKi,t + INi,t, (D6)

where δj is the depreciation rate of industry j calculated using depreciation data from BEA.

All the quantities are expressed in 2009 dollars using the seasonally adjusted implicit price

deflator for non-residential fixed investment.

After we obtain a time-series of capital stock and gross investment observations at the

firm level, we follow Salvanes and Tveteras (2004) and define the capital age of firm i at

time t as:

AGEi,t =
(1− δj)tKi,0(AGEi,0 + t) +

∑t−1
j=0(1− δj)t−j−1Ii,j(t− j)

Ki,t

. (D7)

In the above formulation, capital age at each time t is a weighted average of the age of

each capital vintage. The weights are the relative importance of each capital vintage in

determining total capital in place at time t. We assume that a firm always installs the

newest capital when it invests so that if a firm has capital age equal to AGEi,0 at time t = 0,

then the time t = 1 capital age is a weighted average of the new installed capital vintage,

which has age 1, and the old vintage capital which after one period has age AGEi,0 + 1. The

weights are (1 − δj)Ki,0/Ki,1 for the past vintage and Ii,0/Ki,1 for the new vintage, where

Ki,1 = Ki,0 + Ii,0.

For analytical convenience, we assume that when a firm disinvests, it disposes all cap-

ital vintages in proportion to their contribution to the total installed capital. Under this

assumption, the expression of capital age can be written recursively as

AGEi,t = (1− δj)
Ki,t−1

Ki,t

(AGEi,t−1 + 1) +
Ii,t−1

Ki,t

. (D8)

Therefore, AGEi,t = AGEi,t−1 + 1 when the firm has no positive investment. In addition,

the above formulation implies a firm can reduce the capital age only via positive investment,
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consistent with our model economy.

D.3 Capital Misallocation

Following Chen and Song (2013), we measure the marginal product of capital by the

ratio of operating income before depreciation (oibdpq) to one-year-lag net plant, property,

and equipment (ppentq). For robustness, we follow David et al. (2018) to construct an al-

ternative measure of marginal product of capital by replacing the operating income before

depreciation (oibdpq) with sales (saleq).6 All the quantities are expressed in 2009 constant

dollars using the seasonally adjusted implicit price deflator for non-residential fixed invest-

ment. Following Hsieh and Klenow (2009), we extend from manufacturing to all sectors,

except utility and financial industries, and compute the cross-sectional standard deviation

as the dispersion measure within narrowly defined industries, as classified by the 2-digit SIC

(Standard Industry Classification) industries, or broadly defined industries, as classified by

the Fama-French 30 industries. Specifically, for firm i in industry j, we compute

log

(
MPKi,j

MPKj

)
,

whereMPKj is the cross-sectional average ofMPK measured at industry level. We build the

misallocation measure as follows. First, we compute the standard deviation of log

(
MPKi,j
MPKj

)
at industry-level within each portfolio sorted on capital age, where the number of observations

within each narrowly or broadly defined industry has to be larger than 10 to avoid biased

standard deviations driven by a few extreme values.7 Second, we take the cross-sectional

average of standard deviations across industries within each portfolio. Finally, we report

time-series averages of the cross-sectional dispersions of MPK in five portfolios sorted on

capital age.

D.4 Other Firm Characteristics

Market capitalization is calculated using data from CRSP and it is equal to the number

of shares outstanding (shrout) multiplied by the share price (prc). When size is reported

6Using sales (saleq) to proxy a firm’s output alleviates the missing data concern, given the coverage of
sales (saleq) is higher than that of operating income before depreciation (oibdpq).

7Industry coverage attrition issue is more salient for narrowly defined industries. To be concrete, the
number of industry coverage for SIC 2-digit industry classifications drops from 75 to 42 for both MPK
measures, while the number for Fama-French 30 industry classifications drops from 28 to 24 for the MPK
measure in Chen and Song (2013) and to 26 for the MPK measure in David, Schmid, and Zeke (2018).
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to levels, we express it in 2009 dollars using the seasonally adjusted implicit price deflator

for non-residential fixed investment. Quarter book value of equity is constructed following

Hou, Xue, and Zhang (2015) and it is equal to shareholder’s equity (seqq) plus deferred

taxes and investment tax credit (txditcq, if available) minus the book value of preferred

stock (pstkrq). If shareholder’s equity is not available, we use common equity (ceqq) plus

carrying value of the preferred stock (pstkq). If common equity is not available, we measure

shareholder’s equity as the difference between total assets (atq) and total liabilities (ltq).

The book-to-market ratio is the book value of equity divided by the market capitalization

(prccq times cshoq) at the end of the fiscal quarter. We measure the investment rate as

gross investment δjKi,t + INi,t divided by the beginning of the period of capital stock Ki,t.

Profitability is income before extraordinary items (ibq) divided by the previous quarter book

value of equity.The tangibility is net property plant and equipment (ppentq) divided by total

assets (atq).

D.5 Cash Flow Duration

We construct the firm-level cash flow duration to reflect the timing of cash flows, according

to the model in Lettau and Wachter (2007). Duration (Dur) is the equity implied cash flow

durations measure of Dechow et al. (2004). Dechow et al. (2004) propose this measure and

report a negative relationship between cash flow durations and stock returns, while Weber

(2018) further studies asset pricing implications, including exposures to existing risk factors,

time variation in the slope, and the effect of short-sale constraints.

Duration (Dur) resembles the traditional Maculay duration for bonds and hence reflects

the weighted average time to maturity of cash flows. The ratio of discounted cash flows to

price determines the weights:

Duri,t =

∑T
s=1 s× CFi,t+s/(1 + r)s

Pi,t
, (D9)

where Duri,t is the duration of firm i at the end of fiscal year t, CFi,t+s denotes the cash

flow at time t + s, Pi,t is the current price, and r is the expected return on equity. The

expected return on equity is constant across both stocks and time. Allowing for firm-specific

discount rates cteris paribus amplifies cross-sectional differences in the duration measure

because high-duration firms tend to have lower returns on equity. Firm-specific discounts,

however, would not change the ordering, and hence had no effect on my later results. The

relative ranking is also insensitive to changes in the level of r.8

8Following Weber (2018), variation over time in return on equity r does not alter the cross-sectional
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Unlike fixed income securities, such as bonds, stocks do not have a well-defined finite

maturity, t+ T , and cash flows are not known in advance. Therefore, we split the duration

formula into a finite detailed forecasting period and an infinite terminal value and assume

the later is paid out as level perpetuity to deal with the first complication. Such assumption

to rewrite the equation (D9) as

Duri,t =

∑T
s=1 s× CFi,t+s/(1 + r)s

Pi,t
+

(
T +

1 + r

r

)
× Pi,t −

∑T
s=1CFi,t+s/(1 + r)s

Pi,t
(D10)

Furthermore, we impose a clean surplus accounting, start from an accounting identify, and

forecast cash flows via forecasting return on equity (ROE), Ei,t+s/BVi,t+s−1, and growth in

book equity, (Bi,t+s −Bi,t+s−1)/BVi,t+s−1:

CFi,t+s = Ei,t+s − (Bi,t+s −Bi,t+s−1)

= Bi,t+s−1 ×

[
Ei,t+s
Bi,t+s−1

− Bi,t+s −Bi,t+s−1

Bi,t+s−1

]
. (D11)

Following Dechow et al. (2004), we model returns on equity and growth in equity as au-

toregressive process based on recent findings in financial accounting literature. In Weber

(2018), the author estimates autoregressive parameters using the pooled CRSP-Compustat

universe and assume ROE mean reverts to the average cost of equity. We also follow Weber

(2018) to assume that growth in book equity mean reverts to the average growth rate of the

economy with a coefficient of mean reversion equal to average historical mean reversion in

sales growth. ROE has an AR(1) coefficient of 0.41 and BV of 0.24. We assume a discount

rate r of 0.12, a steady-state average cost of equity of 0.12, an average long-run nominal

growth rate of 0.06, and a detailed forecasting period of 15 years.

D.6 Productivity Estimation Details

Firm-level productivity estimation Data and firm-level productivity estimation are

constructed as follows. We consider publicly traded companies on U.S stock exchanges

listed in both the annual Compustat and the CRSP (Center for Research in Security Prices)

databases for the period 1950-2016. In what follows, we report the annual Compustat items

in parentheses and defined industry at the level of two-digit SIC codes. The output, or

value added, of firm i in industry j at time t, yi,j,t, is calculated as sales (sale) minus the

cost of goods sold (cogs) and is deflated by the aggregate gross domestic product (GDP)

ranking, which alleviate the concern for the cross-sectional implications.
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deflator from the U.S. National Income and Product Accounts (NIPA). We measure the

capital stock of the firm, ki,j,t, as the total book value of assets (at) minus current assets

(act). This allows us to exclude cash and other liquid assets that may not be appropriate

components of physical capital. We use the number of employees in a firm (emp) to proxy

for its labor inputs, ni,j,t, because data for total hours worked are not available.

We assume that the production function at the firm level is Cobb-Douglas and allow the

parameters of the production function to be industry-specific:

yi,j,t = Ai,j,tk
α1,j

i,j,t n
α2,j

i,j,t ,

where Ai,j,t is the firm-specific productivity level at time t. This is consistent with our

original specification because the observed physical capital stock, ki,j,t, corresponds to the

mass of production units owned by the firm.

We estimate the industry-specific capital share, α1,j, and labor share, α2,j, using the

dynamic error component model adopted in Blundell and Bond (2000) to correct for endo-

geneity. Details are provided in Appendix D.6 . Given the industry-level estimates for α̂1,j

and α̂2,j, the estimated log productivity of firm i is computed as follows:

ln Âi,j,t = ln yi,j,t − α̂1,j · ln ki,j,t − α̂2,j · lnni,j,t.

We allow for α̂1,j + α̂2,j 6= 1, but our results hold also when we impose constant returns to

scale in the estimation, that is, α̂1,j + α̂2,j = 1.

We use the multi-factor productivity index for the private non-farm business sector from

the BLS as the measure of aggregate productivity.

Endogeneity and the Dynamic Error Component Model. We follow Blundell and

Bond (2000) and write the firm-level production function as follows:

ln yi,t = zi + wt + α1 ln ki,t + α2 lnni,t + vi,t + ui,t

vi,t = ρvi,t−1 + ei,t, (D12)

where zi, wt, and vi,t indicate a firm fixed effect, a time-specific intercept, and a possibly

autoregressive productivity shock, respectively. The residuals from the regression are denoted

by ui,t and ei,t and are assumed to be white noise processes. The model has the following
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dynamic representation:

∆ ln yi,j,t = ρ∆ ln yi,j,t−1 + α1,j∆ ln ki,j,t − ρα1,j∆ ln ki,j,t−1 + α2∆ lnni,j,t − ρα2∆ lnni,j,t−1

+(∆wt − ρwt−1) + ∆κi,t, (D13)

where κi,t = ei,t + ui,t − ρui,t−1. Let xi,j,t = {ln(ki,j,t), ln(ni,j,t), ln(yi,j,t)}. Assuming that

E[xi,j,t−lei,t] = E[xi,j,t−lui,t] = 0 for l > 0 yields the following moment coditions:

E[xi,i,t−l∆κi,t] = 0 for l ≥ 3

E[xi,j,t−l∆κi,t] = 0 for l ≥ 3. (D14)

that are used to conduct a consistent GMM estimation of equation (D13). Given the esti-

mates α̂1,j and α̂2,j, log productivity of firm i is computed as

ln âi,j,t = ln yi,j,t − α̂1,j ln ki,j,t − α̂2,j lnni,j,t, (D15)

where âi,j,t is the productivity for firm i in industry j.

Endogeneity and Fixed Effects. An alternative way to estimate the production function

avoiding endengeneity issues is to work with the following regression:

ln yi,j,t = vj + zi,j + wj,t + α1,j ln ki,j,t + α2,j lnni,j,t + ui,j,t. (D16)

The parameter vj, zi,j, and wj,t indicate an industry dummy, a firm fixed effect, and an

industry-specific time dummy, respectively. The residual from the regression is denoted by

ui,j,t. Given our point estimate of α̂1,j and α̂2,j, we can use equation (D15) to estimate âi,j,t.

Given this estimation of firms’ productivity, we obtain the alternative estimation of firms’

productivity.

EAdditional Empirical Evidence

In this section, we provide additional empirical evidence, univariate portfolios sorted on

the capital age, asset pricing tests, and more detailed firm characteristics.
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E.1 Asset Pricing Test

We implement the standard procedure and sort firms into quintile portfolios based on

these firms’ capital ages within Fama-French 30 industries. At the beginning of January,

April, July, and October, we rank firms’ capital ages by using 30 industry-specific breaking

points based on Fama and French (1997) classifications and construct portfolios as follows.

We sort firms with a positive capital age in previous six months into five groups from low

to high. To examine the capital age-return relation, we form a long-short, old-minus-high

(OMY), portfolio that takes a long position in the highest quintile and a short position in the

lowest quintile portfolio sorted on capital. After six portfolios (from low to high and long-

short portfolios) are determined, we calculate the value-weighted monthly returns annualized

by multiplying 12 and hold these portfolios over the next three months.

Panel A of Table E1 reports the average annualized excess returns and Sharpe ratios in

five quintile portfolios and long-short portfolio. The spread of long-short (OMY) portfolio

is economically large (5.79% per annum) and statistically significant at 1% level with t-

statistics close to 3. The annualized Sharpe ratio is economically sizable, amounting to 0.44,

which is almost comparable to that of the aggregate stock market index (around 0.5). We

call the return spread of OMY as the capital age premium.

We investigate the extent to which the variation in average returns of the capital age

sorted portfolios can be explained by existing risk factors. We then examine whether the

capital age-return relation reported in Panel A reflects firms’ exposures to the existing sys-

tematic risk factors by preforming time-series regressions of capital age sorted portfolios’

excess returns on the Fama and French (2015) five-factor model (the market factor-MKT,

the size factor-SMB, the value factor-HML, the profitability factor-RMW, and the invest-

ment factor-CMA) in Panel B and on the Hou, Xue, and Zhang (2015) q-factor model (the

market factor-MKT, the size factor-SMB, the investment factor-I/A, and the profitability

factor-ROE) in Panel C, respectively.9 Such time-series regressions enable us to estimate

the betas (i.e., risk exposures) of each portfolio’s excess return on various risk factors and to

estimate each portfolio’s risk-adjusted return (i.e., alphas in %).

[Insert Table E1 Here]

We make several observations. First, the risk-adjusted returns (intercepts) of the capital

age sorted old-minus-young (OMY) portfolio remain large and significant, ranging from

4.63% for Fama and French (2015) five-factor model to 3.31% from the Hou, Xue, and

Zhang (2015) q-factor model, and these intercepts are 2.93 and 1.80 standard errors away

9Data on the Fama-French five factors are from Kenneth French’s website. We thank Kewei Hou, Chen
Xue, and Lu Zhang for sharing the q-factor returns.
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from zero, as reported in the t-statistics above 1% and 10% statistical significant level,

respectively. Second, the alpha implied by the Fama-French five-factor model is slightly

lower than the the capital age sorted portfolio spread in the univariate sorting (Panel A),

while the alpha implied by HXZ q-factor model remains half of the long-short portfolio sorted

on capital age. Third, our old-minus-young portfolio have insignificantly negative betas with

respect to the value factor in the Fama and French (2015) five-factor model. The old-minus-

young (OMY) portfolio presents negative loadings on market and size factors, but positive

loadings on profitability and investment factors for Fama-French five-factor model (Panel

B). Similarity, the OMY portfolio presents negative loadings on market and size factors,

but positive loadings on profitability and investment factors for HXZ q-factor model (Panel

C). Loads on market, size, profitability, and investment are statistically significant, which

suggest firms with old capital bear less exposure to market risk, are larger in size, earn more

profits, and incur less investment than firms with young capital. In summary, results from

asset pricing tests in Table E1 suggest that the cross-sectional return spread across capital

age sorted portfolios cannot be completely explained by either the Fama and French (2015)

five-factor or the HXZ q-factor model (Hou et al. (2015)).

E.2 More Detailed Firm Characteristics

Table E2 documents how differences in firms’ capital age are related to other character-

istics. We report average capital age and other characteristics across five quintiles sorted on

capital age for financially constrained firms.

[Insert Table E2 Here]

On average, our sample contains 2345 firms. Firms are evenly distributed across five capital

age sorted portfolios, where the average number of firms in each portfolio ranges from 469 to

480. The cross-sectional variations in capital age are large, ranging from 9.71 to 35.95 across

five portfolios. Both size and book-to-market ratio (B/M) increases with capital age sorted

portfolios. Moreover, firms with a lower capital age are prone to have a higher investment

rate (I/K) to reflect more investment opportunities, which is consistent with the pattern of

book-to-market ratio. That is, high capital age firms are likely to be value firms with less

investment opportunities. In addition, we observe a downward sloping pattern of profitability

(ROE). Firms with higher capital age are less profitable than firms with lower capital age.

On the other hand, there is a positive relationship between capital age and tangibility.

In summary, firms with a high capital age tend to have larger sizes, higher book-to-market

ratios, higher investment rates, lower profits, and higher tangibility.
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Table E1. Asset Pricing Tests

This table shows asset pricing tests for five portfolios sorted on capital age relative to firm’s industry peers,
where we use the Fama-French 30 industry classifications and rebalence portfolios at the beginning of January,
April, July, and October. The results use monthly data, where the sample period is July 1979 to December
2016 and excludes utility, financial, and R&D intensive industries from the analysis. In Panel A we report
the portfolio alphas and betas by the Fama-French five-factor model, including MKT, SMB, HML, RMW,
and CMA factors. In panel B we report portfolio alphas and betas by the HXZ q-factor model, including
MKT, SMB, I/A, and ROE factors. Data on the Fama-French five-factor model are from Kenneth French’s
website. Data on I/A and ROE factor are provided by Kewei Hou, Chen Xue, and Lu Zhang. Standard
errors are estimated by using Newey-West correction with ***, **, and * indicate significance at the 1, 5,
and 10% levels. We include t-statistics in parentheses and annualize the portfolio alphas by multiplying 12.
All portfolios returns correspond to value-weighted returns by firm market capitalization.

Variables Y 2 3 4 O OMY
Panel A: Fama-French Five-Factor Model

αFF5 -5.80*** -3.02*** -1.00 -2.65*** -1.16 4.63***
[t] -4.00 -3.52 -1.53 -2.72 -1.31 2.93
MKT 1.13*** 1.11*** 0.99*** 1.01*** 1.01*** -0.12**
[t] 28.72 45.25 41.87 61.79 40.19 -2.21
SMB 0.57*** 0.25*** 0.04 0.01 -0.08** -0.65***
[t] 8.73 7.07 1.04 0.65 -2.16 -9.32
HML 0.09 0.07 -0.04 -0.00 0.08 -0.01
[t] 1.61 1.34 -0.80 -0.07 1.57 -0.12
RMW 0.07 0.16*** 0.31*** 0.38*** 0.31*** 0.23***
[t] 1.08 3.59 10.19 10.76 8.27 2.95
CMA -0.36*** -0.13* 0.11* 0.38*** 0.25*** 0.61***
[t] -3.74 -1.76 1.84 7.50 3.66 5.39

Panel B: HXZ q-Factor Model
αHXZ -4.25** -1.81* -1.22* -1.72 -0.95 3.31*
[t] -2.53 -1.83 -1.92 -1.09 -0.94 1.80
MKT 1.12*** 1.09*** 0.98*** 0.97*** 1.00*** -0.12**
[t] 28.23 38.72 38.13 52.76 32.32 -2.19
SMB 0.45*** 0.16*** -0.01 -0.06** -0.15*** -0.60***
[t] 4.67 3.10 -0.31 -2.57 -3.95 -7.29
I/A -0.28*** -0.06 0.12*** 0.39*** 0.37*** 0.65***
[t] -3.41 -1.05 2.89 3.52 4.84 6.81
ROE -0.10* -0.00 0.24*** 0.15*** 0.19*** 0.29***
[t] -1.75 -0.05 8.45 2.61 3.42 2.89
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Table E2. Firm Characteristics

This table reports time-series averages of the cross-sectional averages of firm characteristics in five portfolios
sorted on capital age, relative to their industry peers, where we use the Fama-French 30 industry classifi-
cations and rebalence portfolios at the beginning of January, April, July, and October. The sample period
is from July 1988 to December 2015 and excludes utility, financial, and R&D intensive industries from the
analysis. The detailed definition of the variables refers to Appendix.

Variables Y 2 3 4 O
Capital Age 9.71 15.04 19.86 24.66 35.95
Log ME 9.02 9.54 9.83 9.85 10.05
B/M 0.52 0.52 0.51 0.56 0.61
I/K 0.10 0.07 0.05 0.04 0.03
ROE 0.11 0.09 0.08 0.07 0.06
TANG 0.31 0.35 0.38 0.42 0.44
Number of Firms 480 469 471 467 458
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