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ABSTRACT

This paper studies the asset pricing implications of idiosyncratic labor income tail risk on credit

spread. I propose a model featuring an incomplete market, heterogeneous households with recursive

preference, and comovement of tail risk in labor income and firm cash flow growth. The model

produces strong covariation of households’ marginal utility and default rates, which helps to explain

the stylized fact that the credit spread (1) is on average large and (2) is positively related to labor

tail risk. Quantitatively, the tail risk premium can account for as much as 68% of the observed

credit spread. My framework provides a new insight, drawn from an option perspective, that the

implications of idiosyncratic tail risk for stocks and bonds can be very different.
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1 Introduction

This paper studies the asset pricing implications of idiosyncratic labor income tail risk on

corporate bond spreads under an incomplete market framework. The tail events refer to those rare

but extreme negative cuts in labor income, for example, job displacement and significant wage cuts.

Rather than aggregate, rare disaster type of tail risk, labor tail events occur in the cross section

and are largely idiosyncratic. However, in an incomplete market setting where the idiosyncratic

risks are uninsurable, these large and negative shocks can have a first-order effect on household

welfare, and, in turn, on asset prices.

Historically, labor tail risk and credit spreads are both counter-cyclical and exhibit strong

comovement. Figure 1 plots the quarterly time series of Moody’s Baa-Aaa credit spread together

with a proxy for labor tail risk. The figure shows that the two time series move in lockstep and

both spike during recessions. The correlation between labor tail risk and credit spread is as high

as 0.73. Labor tail risk and default risk are tightly linked. When negative shocks hit firms, they

are more likely to default. Meanwhile, firms also tend to cut wages or lay off workers, which drives

up labor tail risk. As Figure 1 shows, high labor tail risk is usually accompanied with clustered

defaults, especially for the second half sample. This positive relation can potentially generate large

credit spreads as well as a comovement of labor tail risk and credit spreads.

To rationalize the findings, this paper develops a model featuring an incomplete market, hetero-

geneous households with recursive preference, and a common factor that drives the tail risk in labor

income and firm cash flow growth. The model has three key ingredients. First, households face

state-dependent, idiosyncratic tail risk in labor income. Second, because the market is incomplete,

labor risk effectively transfers into consumption risk. Although tail risks happen idiosyncratically

to households, their intensity is higher in recessions than in booms, and can be an aggregate risk

factor driving households’ marginal utility. Third, tail risk in firm cash flow is positively related to

labor tail risk. Firms make optimal financing decisions based on the trade-off between tax benefits

and bankruptcy costs. Default arises endogenously in response to negative shocks from labor risk

and cash flow.

The basic intuition is as follows. As the economy contracts, business conditions deteriorate. On

the one hand, firms start to lay off workers or managers to reduce costs. The left tail of the cross-

sectional distribution of income growth becomes fatter, i.e., a household is more likely to experience

a large decline in labor income. Ex-post, tail risk is effectively concentrated among a small fraction

of the households for whom the consequences are disastrous. This concentration mechanism makes

the households ex-ante more averse to the economic downturn. On the other hand, a greater

fraction of firms finds their option to default more valuable than paying back creditors, leading to

clustered default. Corporate bonds are bad hedge against labor tail risk, and this rationalizes a

large credit spread. In addition, as more firms get closer to default, the bankruptcy probability

is more sensitive to negative shocks than in good times. In other words, the conditional beta of

default probability to labor tail risk increases in bad times. This generates the comovement in

credit spread and labor tail risk.
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Idiosyncratic tail risk is particularly important to corporate bond pricing. Recessions are char-

acterized as a combination of negative first moment (mean) shocks, positive second moment (un-

certainty) shocks, and negative third moment (skewness) shocks (Bloom, Guvenen, Salgado, et al.

(2016)) in the cross-sectional distribution of firm fundamental growth, as measured by sales growth,

profit growth, etc. That is to say, during recessions, risk not only concentrates on a subset of house-

holds, but also on a subset of firms. The negative relation between labor tail risk and cash flow

growth (first moment) will induce a large risk premium on both stocks and bonds. However, the

comovement of labor tail risk and firm cash flow tail risk (third moment) will have very different

effects on stocks and bonds. Consider the equity of a levered company as a call option, while the

value of debt is modeled as a short put option plus a risk-free debt. Because idiosyncratic tail risk

increases both the call and put option value, it provides a hedge for equity holders while subjecting

debt holders to more risk due to a short position. In other words, the idiosyncratic tail risk has an

option effect that transfers risks from equity holders to bond holders. In addition, out-of-money

puts are more sensitive to changes in tail risk intensity than in-the-money calls. Thus, idiosyncratic

cash flow tail risk will induce significant impact on credit risk premium, but its effect on equity is

marginal.

The paper proceeds as follows. First, I provide new empirical evidence on the relationship

between labor tail risk and credit spreads. I construct a quarterly labor skewness index as a proxy

for labor tail risk, which targets the time series of cross-sectional labor income growth skewness

from Guvenen, Ozkan, and Song (2014b). Regression analysis shows that labor tail risk has strong

explanatory power on credit spread. Tail risk itself explains as much as 53% of the Baa-Aaa credit

spread variation. One standard deviation increase in labor tail risk is associated with an increase of

33 basis points in credit spread. After controlling traditional credit risk determinants, the coefficient

remains significant at 31 basis points. I also find labor tail risk to be highly correlated with the

third moment risk of firm fundamental growth but not the second moment, which provides direct

support to my model assumption.

Then, I build a simple two-period model with only idiosyncratic risks to illustrate three key

points of the basic mechanism. First, I show that idiosyncratic labor tail risk affects stochastic

discount factor only if the market is incomplete. Households’ marginal utility is a monotonically

increasing function of event probability. Second, I demonstrate that the comovement of labor tail

risk and cash flow growth tail risk have different implications for the valuation of firm asset, equity,

and debt. The comovement exerts no effect on firm asset valuation because the expectation of

idiosyncratic shock is zero. In this simple economy, the valuation of firm assets is equivalent to a

risk-free bond. However, it will induce a positive credit risk premium because default probability

increases in bad times. The impact on equity risk premium, on the contrary, is negative. The value

of equity and debt are summed as the total asset value by construction. With option effect, the

comovement effectively transfers risk from equity to bond, making equity a hedge against labor tail

risk. Third, I use Taylor expansion and numerical examples to show that taking the higher order

moments effect into account is quantitatively important for generating a high credit spread. On
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the household side, due to the curvature of utility function, the effect of risk concentration induced

by negative skewness is an order of magnitude more important than the second moment. On the

firm side, because the consequences of large, negative shocks are mostly absorbed by debt holders,

the effect of negative skewness is also stronger.

Next, I assess the quantitative significance of idiosyncratic tail risk in affecting the credit spread

within the full model. The model, whose parameters are calibrated to match the dynamics of the

labor skewness index and firm sales growth, is able to (1) generate a large credit spread of 1.03%

with a cumulative default rate and recovery rate similar to historical average, (2) account for other

stylized facts, such as low leverage ratios, high and volatile stock returns, etc., and (3) reproduce

the strong comovement between labor tail risk and credit spread.

Finally, I decompose the credit spread from the model to illustrate each ingredient’s quantitative

contribution. The unique pricing channel for corporate bonds, i.e., the comovement between labor

tail risk and firm cash flow tail risk, contributes 29 basis points, which is about one third of the

total credit risk premium, while the negative relationship between labor tail risk and firm cash flow

growth contributes about 41 basis points of the credit risk premium.

Related Literature This research bridges two important streams of literature: the credit spread

puzzle and asset pricing models with heterogeneous agents and incomplete markets.

Huang and Huang (2012) provide a summary of the credit spread puzzle. In particular, they

show that structural models, if calibrated to match the leverage ratios, default probabilities, and

recovery rates of investment grade firms, produce credit spreads well below historical averages.

This paper provides a new but quantitatively plausible channel to tackle the puzzle. I document

a strong link between idiosyncratic tail risk in labor markets and credit spread variation, and thus

add to the empirical literature on the determinants of credit spread variation1. The research is

most closely connected to the literature on the macroeconomic determinants of credit risk. Several

articles2 show that under reasonable calibration, large and volatile credit spread can be justified by

exposure to macroeconomic risks. While previous work focuses on complete market and aggregate

risk, I study the impact of tail risk in the cross section, which can be easily identified from the data.

I show that after controlling for a long list of aggregate risks, labor tail risk still remains the most

robust and significant variable to explain credit spread fluctuation. The additional explanatory

power of idiosyncratic labor risk indicates that it is critical to take an incomplete market view in

resolving the credit spread puzzle. Quantitatively, when calibrated to the dynamics of labor income

growth skewness, my model can account for the high equity premium, the under-leveraged puzzle,

and the level and dynamics of credit spread.

This paper also contributes to a broader literature on asset pricing models with heterogeneous

1See Duffee (1998); Collin-Dufresn, Goldstein, and Martin (2001); Campbell and Taksler (2003), Chen, Lesmond,
and Wei (2007), Cremers, Driessen, Maenhout, and Weinbaum (2008), Zhang, Zhou, and Zhu (2009), Ericsson,
Jacobs, and Oviedo (2009), Krishnamurthy and Vissing-Jorgensen (2012), Kang and Pflueger (2015), Culp, Nozawa,
and Veronesi (2018).

2See Hackbarth, Miao, and Morellec (2006), Chen, Collin-Dufresne, and Goldstein (2008), Bhamra, Kuehn, and
Strebulaev (2009), Chen (2010).
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agents and incomplete markets. The risk concentration mechanism in my model builds on the

seminal work of Mankiw (1986) and Constantinides and Duffie (1996). These papers rely on

uninsurable, counter-cyclical idiosyncratic volatility to generate a high equity risk premium. In

contrast, my research emphasizes the third moment risk to demonstrate that due to the curvature

of the utility function, its quantitative effect is much larger. Recent literature brings skewness

into focus. Guvenen et al. (2014b) study a very large data set from the U.S. Social Security

Administration and find that the idiosyncratic volatility of labor income growth is largely constant

through the business cycles, but the left-skewness is strongly countercyclical. My paper confirms

this finding and shows that tail risk in labor income growth is highly correlated with tail risk in

firm fundamental growth. Constantinides and Ghosh (2017) Schmidt (2016) relates idiosyncratic

tail risk to asset prices and find that its effect on equity premium is quantitatively large. Ai and

Bhandari (2017) study an economy featuring idiosyncratic risk, insurance through labor contracts,

and limited commitments, providing another channel through which idiosyncratic tail risk can affect

risk premia. While all of these work focuses on the stock market, my paper adds to the literature

by studying the impact on corporate bonds. Tail risk is tightly linked to bond pricing with respect

to the nature of default risk. My paper distinguishes the pricing mechanism on bonds from equity,

and illustrates that the comovement of idiosyncratic tail risk in labor income and firm cash flow

growth will induce a positive effect on the credit risk premium but a negative effect on the equity

risk premium.

This paper is also related to the literature on labor economics. A growing body of empirical

evidence shows that there is a substantial amount of idiosyncratic risk in labor income3 and con-

sumption 4. While households can generally smooth out transitory and diffuse idiosyncratic risks

in their labor income, they are particularly vulnerable to persistent and jump risks, which generate

sizable costs for business cycles (Krebs (2007), Davis and von Wachter (2011)). On the other hand,

Bloom et al. (2016) show that, during recessions, firm fundamental growth is featured with a fatter

left tail. This paper combines these empirical facts to study the implications for corporate decision

and bond pricing. I shows that the third moment effect has a strong influence on bond prices and

corporate financing behaviors, providing further evidence of the importance of relating labor risk

to finance.

Lastly, several studies also explore labor and asset prices5, where rigid wages act as operating

leverage and amplify risk premia. Bai (2016) considers search and matching frictions in the labor

market and examines the relationship between unemployment and credit risk. His work also em-

phasizes tail risk. However, the type of risk and pricing mechanisms in my paper is completely

different. In Bai (2016)’s paper, the market is complete and tail risk takes the form of aggregate

rare disaster, where as I propose incomplete markets and cross-sectional tail events. In the real

3See Storesletten, Telmer, and Yaron (2004),McKay, Papp, et al. (2011),Guvenen et al. (2014b),Guvenen, Karahan,
Ozkan, and Song (2015).

4See Deaton and Paxson (1994), Brav, Constantinides, and Geczy (2002), Vissing-Jørgensen (2002), Blundell,
Pistaferri, and Preston (2008), Heathcote, Storesletten, and Violante (2014).

5See Danthine and Donaldson (2002), Uhlig (2007), Favilukis and Lin (2015), Favilukis, Lin, and Zhao (2017)
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economy, both channels might be in play. My paper shows that quantitatively, the incomplete

market channel can achieve a first order effect on credit risk premia without any large aggregate

consumption decline, which is seldom observed in the data.

2 Empirical Evidence

In this section, I present several empirical facts that motivate my interest in studying the link

between idiosyncratic tail risk of labor income and credit risk. First, I provide evidence that the

left-tail risk of labor income is counter-cyclical. Next, I investigate the cyclical behavior of firm

fundamentals. I show that the first and third moment of firm growth is most correlated with labor

income risk. I then regress credit spread on proxies for idiosyncratic tail risk of labor income. In

U.S. data, labor tail risk can explain a large proportion of the time variation in credit spread. The

result is robust with controls in both level and first-difference regression. Lastly, I will discuss some

issues on the mechanism and interpretation.

2.1 Counter-cyclical Idiosyncratic Tail Risk in Labor Market

In this subsection, I investigate the cyclicality of idiosyncratic tail risk in labor market and

construct a quarterly proxy for asset pricing study. As labor tail risk is not directly observable in

the data, I rely on the cross-sectional skewness of labor income growth to identify the risk. Guvenen

et al. (2014b) (henceforth GOS) reports a number of summary statistics for the cross-section of

labor income growth based on a nationally representative sample of panel labor income records

for 10% males aged 25-60 in the U.S. population from the Social Security Administration. The

statistics are annual and covers 1978 - 2011. They show that the left-skewness of cross-sectional

labor income growth is strongly counter-cyclical.

[Insert Figure 2 here]

Figure 2 plots the time series of skewness measure for trailing 1-year labor income growth.

The cross-sectional skewness is on average negative and dips during recession, indicating that

households face substantial idiosyncratic downside risk. Table 1 computes the sample moments

of cross-sectional labor income growth in recession and expansion period. Notably, the left tail

expands and the right tail shrinks in economic downturn, Kelley skewness 6 decrease from 0.048 to

-0.092 for 1-year labor income growth and from 0.104 to -0.071 for 5-year labor income growth.

[Insert Table 1 here]

In order to explore the asset pricing implication, I need data at higher frequency and longer

sample period. To this end, I target 1-year skewness of cross-sectional labor income growth and

6Kelley skewness is a robust measure of skewness, which is defined as (P90−P50)−(P50−P10)
P90−P10

, where Pn is the nth

percentile of the distribution.
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construct a quarterly skewness index using a large cross-section of macro variables. I use three

pass regression filter (3PRF) of Kelly and Pruitt (2015) as my baseline index construction method.

As a robustness check, I also use inverse of mean squared errors (IMSE) method. Two methods

generate similar results. Details of index construction refer to Appendix A.

Though skewness measure provides a direct proxy for tail risk, it may still subject to interpola-

tion errors. Therefore, I also include initial claims and unemployment rate as additional proxies for

left-tail risk in labor market. Initial claims measures the number of jobless claims filed by individ-

uals seeking to receive jobless benefits. It typically rise before the economy enters a recession and

decline before the economy starts to recover. Figure 3 plots the time series of these three proxies.

Visually, they comove together with initial claims slightly lead unemployment rate and skewness

index. Overall, this confirms that tail risk in labor market is strongly counter-cyclical.

[Insert Figure 3 here]

2.2 Cyclicality of Firm Fundamental Risk

Job displacement or wage cut are usually caused by deteriorated business conditions, which

also increase the probability of default. In table 2, I compute the statistics of cross-sectional sales

growth distribution for expansion and recession period respectively. Comparing average statistics

between recession and expansion period, we observe that in economic downturn, the mean and

median of sales growth decline considerably, the standard deviation increase a only little bit and

the skewness decrease drastically. Kelley skewness for the cross-section of quarterly sales growth

rate drops from 0.066 in expansion period to -0.172 in recession period. To summarize, recessions

are characterized by a large negative shock to first and third moment of firm growth, and a small

positive shock to second moment.

[Insert Table 2 here]

2.2.1 Comovement with Labor Tail Risk

In rational asset pricing models, comovement with macro risk is of more importance in deter-

mining the asset prices. In this regard, I compute the correlation between skewness index and

cross-sectional moments of firm fundamental growth. The firm variables are:

Firm sales growth: Data is from Compustat fundamental quarterly. Sales growth is measured

as the log difference between sales in quarter t and quarter t-4. I restrict the sample to firms with

10 or more years of data (Result that require firm to have at least 25 years or 1 year data is similar)

and quarters with at least 500 firms in the cross section. This result in a quarterly time series from

1975Q4-2013Q4.

Firm gross profit growth: Data is from Compustat fundamental quarterly. Gross profit

is calculated as revenue subtract cost of good sold and divided by total asset (retq − cosq)/atq.
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Gross profit growth is measured as the log difference between gross profit in quarter t and quarter

t-4. Sample restriction is the same as sales growth. This result in a quarterly time series from

1976Q4-2013Q4.

Firm employment growth: Data is from Compustat fundamental annual. Employment

growth is calculated as log difference between Compustat item emp between year t and year t-1.

Sample restriction is the same as sales growth. This result in an annual time series from 1964-2013.

The moments I considered in this exercise is first moment (mean or median), second moment

(standard deviation or range (P90 − P10)) and third moment (skewness or Kelly skewness ), I also

report left tail (P90 − P10) and right tail (P90 − P50) for reference.

[Insert Table 3 here]

Table 3 reports the result. Correlation of skewness index and first moment is strong, which

ranges from 0.48 to 0.56. Correlation of skewness index and second moment is relatively weak,

the absolute value of correlations never go beyond 0.1. Interestingly, skewness index also has high

correlation with firm fundamental skewness. Low skewness index accompanies the expansion of left

tail and shrink of right tail in the cross section of firm fundamental growth. In summary, when

households face higher labor tail risk, firms experience low growth and a subset of them performs

extremely badly.

2.2.2 Firm Fundamental Risk in the Cross Section

I further explore heterogeneity of firm fundamental risk in the cross section. Previous work

documents a substantial variation in corporate bond yield for firms with different characteristics.

For example, it is well known that small size firms have higher bond yield than big firms, and

firms with low market-to-book ratio have higher bond yield than firms with high market-to-book

ratio. In this exercise, I compare firm fundamental risk across size and market-to-book sorted

portfolios to see if the pattern is consistent with the tail risk story. Specifically, for each period t, I

compute the cross-sectional mean, standard deviation and skewness of log sales growth within each

size/market-to-book sorted firm group. Then, I calculate the time series average of these statistics

and their correlation with labor skewness index.

[Insert Table 4 here]

Table 4 shows the result. The second column reports the credit spread for each portfolio,

numbers are from KUEHN and Schmid (2014). Credit spread increase monotonically from high

market-to-book portfolio to low market-to-book, from large size to small size. Next, we turn to

firm fundamental risks of each portfolio. Panel A reports the statistics of market-to-book sorted

portfolio, the average growth rate and skewness increase monotonically from low to high group.

More importantly, their correlation with labor tail risk decrease from low to high, which indicates

that low market-to-book firms are more risky in terms of downside risk. This provides suggesting

8



evidence that labor tail risk also drives the cross-sectional variation of credit spread. The patten of

volatility is non-monotone and its correlation with skewness index is negligible. Panel B shows the

statistics of size sorted portfolio and has similar pattern: growth rate and skewness increase from

high credit spread portfolio to low, and their correlation with skewness index decrease monotoni-

cally. Notably, in size sorted portfolio, though volatility decrease monotonically, their correlation

with labor tail risk has the opposite pattern as predicted by theory: large firms’ volatility is more

negatively correlated with labor tail risk, which means in bad times large firms’ cash flow are more

volatile and their default timing should be more correlated with SDF. With respect to the fact

that correlation of volatility and labor tail risk is weak and its pattern is unclear, credit spread is

unlikely to be driven by the comovement of time varying volatility of fundamental risk and labor

tail risk.

In summary, the analysis conveys two message: First, the time-varying mean and tail risk

(skewness) of firm fundamental growth, as well as their correlation with labor tail risk are important

for understanding credit spread variation in the cross section. second, the pattern of cross-sectional

firm fundamental risk is consistent with the hypothesis that labor tail risk drives the bond risk

premia, providing supporting evidence that labor tail risk should also matter for credit spread in

aggregate level.

2.3 Labor Tail Risk and Credit Spread

2.3.1 Credit Spread Regression

In baseline regression, I regress Moody’s Baa-Aaa credit spread on skewness index (also initial

claims and unemployment rate) together with other macro variables for control.

CSt = β0 + β1St + γXt + εt.

∆CSt = β0 + β1∆St + γ∆Xt + εt.
(1)

where St is the skewness index and Xt is a vector of controls. All the independent variables are

standardized to have mean 0 and standard deviation of 1. I also include first-difference regression

for robustness check. The controls I considered here are

Aggregate stock volatility: CRSP data. Monthly realized stock market volatility estimated

from daily returns on the CRSP market index. Aggregate stock market volatility is constructed as

a six-month moving average of monthly series.

Idiosyncratic stock volatility: CRSP data. Monthly realized idiosyncratic stock volatility

estimated from daily returns on individual as in Goyal and Santa-Clara (2003). The idiosyncratic

stock volatility is constructed as a six-month moving average of monthly series.

3 month treasury yield: FRED data.

Term spread: FRED data. Calculated as 10-year treasury yield minus 3-month treasury yield.

Aggregate market leverage: Flow of Fund table B103 data. Aggregate market leverage is

calculated as total liability divided by total asset in the non-financial corporate sector.
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Cyclical adjusted price to earnings ratio: Data from Robert Shiller’s website.

Industrial production growth: FRED data.

Table 5 reports the level regression result. Model (1) shows that skewness index along can

explain 53% of the time series fluctuation of credit spread. Initial claims and unemployment rate

has similar explanatory power on credit spread. Putting three variables together, they explain about

65% of the credit spread fluctuation. Controlling for other variables, the effect of labor market risk

is still there. Particularly, adding skewness index to the existing controls help improve the adjusted

R square from 0.61 to 0.70 and the coefficient of skewness is significant with a -7.05 t-statistics.

An interesting observation is that after adding skewness index into the regression, it drives out the

explanation power of industrial production growth, the coefficient on industrial production growth

even turn from negative to positive. In terms of economic magnitude, 1 standard deviation increase

in tail risk (decrease in skewness index) is associated with 33 basis point increase in credit spread.

The magnitude remain stable after controls for other macro variables.

[Insert Table 5 here]

Table 6 reports the first difference regression, which tells a similar story: the change in labor

tail risk can explain the change in credit spread and contain additional information to existing

controls, although the coefficient of skewness index is only significant at 10% level (initial claims

and unemployment rate become insignificant in this case).

[Insert Table 6 here]

2.3.2 Labor Tail Risk and Liquidity

Literature documents that part of corporate bond premium can be attributed to liquidity. For

example, Longstaff, Mithal, and Neis (2005) estimate that default component represents about 51%

to 83% of the credit spreads for different rated bonds and the nondefault components are strongly

related to bond liquidity. Bao, Pan, and Wang (2011) documents a strong relation between liquidity

and credit spread both in cross section and aggregate level. Default risk and liquidity frictions can

also interact with each other, which leads to a default-liquidity spiral (He and Milbradt (2014),

Chen, Cui, He, and Milbradt (2017)).

In this section, I add liquidity into credit spread regression for two purposes. First, I would like

to make sure that liquidity does not drive out the explanatory power of labor tail risk. Second, I

could look at the interactions between liquidity and labor tail risk. To this end, I run the regression

for level and change of credit spreads:

CSt = β0 + β1St + β2Nt + β3StNt + εt.

∆CSt = β0 + β1∆St + β2∆Nt + β3∆St∆Nt + εt.
(2)
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where St is skewness index, Nt is a proxy for liquidity and StNt captures the interaction. A direct

measure of corporate bond liquidity is usually obtained from TRACE data. However, this liquidity

measure begins at 2002. The sample period is too short for my quarterly time series exercise.

Therefore, I prefer to use market liquidity measure of Hu, Pan, and Wang (2013), which dates back

to 1987Q1 as it uses Treasury data.

Table 7 reports regression result. We make two observations: First, after controlling for liquidity,

the coefficient of skewness index remain significant in both level and change regression. Adding

liquidity helps increase R squared by 5% in level regression and 18% in change regression. Thus,

liquidity adds little in explaining the time series level of credit spread but do contribute to explain

the change of credit spread. Second, the interaction term is negative and significant in both

regression, which mean when labor tail risk and illiquidity are both high, their relation with credit

spread is stronger. In the data, correlation of skewness index and liquidity is as high as -0.71, the

correlation of change is about -0.22. These evidence points to a risk-liquidity spiral story: when

labor tail risk increases, everyone wants to reduce their corporate bond holding, which reduces

secondary bond market liquidity, and higher illiquidity discount the bond value and makes firm

more likely to default, which further increase investors’ incentive to sell off their bond holdings.

2.3.3 Robustness

In this subsection, I show the robustness of labor skewness and credit spread relation. Skewness

index is essentially a linear combination of macro variables. Therefore, it is impossible for the

skewness index to capture information beyond these macro variables. However, we can still check

whether skewness index is a good combination of individual macro variables such that it better

explain the time variation of credit spread.

To this end, I run a horse race of univariate regression of credit spread on skewness index (3PRF

and IMSE), 97 macro variables and the 8 macro controls used in baseline regressions. Figure 6

plots the R2 of each regression. The R2s are sorted in descending order. The red bar represents R2

from the 3PRF skewness index regression and the blue bar represents R2 from the IMSE skewness

index. The results shows that in the level regression, 3PRF skewness index archives the highest

R2, followed by capacity utilization and unemployment measure, and then IMSE skewness index.

In the change regression, 3PRF skewness index ranks the third and IMSE skewness index ranks

the fifth, the champion and runner-up are production price index and purchasing managers’ index

respectively.

[Insert Figure 6 here]

In addition, I construct indices from the same 97 macro variables but random weights to see

the chance that a randomly constructed index outperform the skewness index. Specifically, I draw

the weights from a uniform distribution on [-1,1] and construct a index
∑97

i=1wivi. I then regress

the credit spread on this index to get the univariate R2. I do this 100,000 times and plot the

empirical distribution of R2 in figure 7. The red line and blue line show the univariate regression
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R2 from 3PRF skewness index and IMSE skewness index respectively. The 3PRF skewness index

and IMSE skewness index both locate somewhere around the right tail of the distribution. Only

0.096% and 4.8% of simulated indices outperform 3PRF skewness index and IMSE skewness index

in the level regression. 1.96% and 2.15% of simulated indices outperform 3PRF skewness index

and IMSE skewness index in the change regression. To summarize, these evidence show that the

skewness index is a good combination of information that explains the fluctuation of credit spread.

[Insert Figure 7 here]

In unreported tables, I also add proxies for skewness of firm fundamental into the baseline

regression. When not controlling for labor income skewness, firm fundamental skewness do show

some explanatory power on time variation of credit spread. However, the explanatory power is

subsumed by labor income skewness after the inclusion of skewness index. This indicate that the

labor income channel (through the credit risk channel) should play a more important role than the

firm skewness channel (through physical default probability).

2.4 Discussion

2.4.1 Labor Income and Consumption

In standard consumption-based asset pricing models, prices are determined by households’

marginal rates of substitution, which is related to consumption risk. Ideally, I should look at id-

iosyncratic tail risk in consumption. However, long sample and high quality individual consumption

data is not available. Because of the sample size, it is also difficult to accurately identify higher

moments from survey-based consumption data, such as the Consumer Expenditure Survey (CEX)

or the Panel Study of Income Dynamics (PSID). Therefore, I prefer to identify tail risk from la-

bor income growth moments reported by Guvenen et al. (2014b), which has longer sample and is

potentially more accurate.

There is a large literature in labor economics that studies the impact of labor income shock on

consumption. The general view is that households can largely smooth out transitory shocks of labor

income, but can only partially insure against persistent shocks. Blundell et al. (2008) combines

information from PSID and CEX to estimate a partial insurance model. In their estimation, 22.45%

of permanent shocks to male earnings are transmitted to consumption 7. Higher moment risk such

as long spells of job displacement should be more uninsurable for workers. Unemployment benefits

only pays about half of the previous wage and is usually capped at average earnings of that state.

In addition, displaced workers usually experience substantial wage reductions even if they find a

new job. In a macroeconomic model with incomplete markets, higher moment risk generate far

more welfare costs than second-moment risk (Krebs (2007)).

Idiosyncratic tail risk in labor income can also affect asset prices through risk sharing. Ai and

Bhandari (2017) studies an economy where capital owners, who is the marginal investor, provide

7My calibration use the same labor-consumption transition rate
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insurance to workers using long-term contract. However, due to limited commitment, tail risk in

labor productivity is not insured. In bad times, the prospect of less risk sharing in the future

translate to lower consumption share of capital owners through optimal contract. Tail risk of labor

productivity essentially makes marginal investors’ consumption more volatile.

2.4.2 The Marginal Investor

According to Fed’s Flow of Funds, life insurance companies are the largest domestic holder of

U.S. corporate bonds. Mutual funds are the second largest domestic holder, followed by households

(including hedge funds), private pension funds, and state & local government retirement funds.

Potentially, the marginal investors are the wealthy families.

Cross-sectional skewness in GOS focus on growth not level. Households in the left tail is

not necessary poor. To alleviate the concern that labor tail risk is not prevalent among wealthy

households, I plot the skewness of cross-sectional 1-year labor income growth within recent labor

income groups. Specifically, households are first sorted by recent labor income at time t, which

is measured as the average labor income of past five years, assigned to 100 groups, and then the

relevant statistics is computed within groups from t to t + 1. Figure 4 shows the result, the left

panel shows the third moment measure and the right panel shows the Kelley skewness. The third

moment measure exhibit U shape pattern and Kelly skewness decrease from low income to high

income. Overall, the average skewness in labor income growth appear to be more negative among

wealthy households.

[Insert Figure 4 here]

Figure 5 shows the time-variation of skewness within different income groups. The skewness

of different income group track each other closely. The time series correlation between the overall

skewness and each income group skewness is mostly above 0.8. This indicate that the overall

skewness is a good candidate for measuring the common idiosyncratic tail risk fluctuation.

[Insert Figure 5 here]

While I emphasize the role of wealthy marginal investors, it is not saying that idiosyncratic tail

risk for less wealthy workers is negligible for asset prices. It can still affect bond premium through

risk sharing as in Ai and Bhandari (2017). I do not model the specific channel in my calibration

exercise. Instead, I take a more tractable framework as in Constantinides and Duffie (1996) to

exam the impact of uninsurable tail risk on corporate bond premium.

Corporate bond is mostly hold by institutional investor. Among these institutions, mutual

funds, money market funds and exchange-traded funds actively trade corporate bond and their

decisions are potentially influenced by capital inflow or outflow. Though it is outside of my model,

as in my model, there is no heterogeneity in institutions and all assets must be held by investors

in equilibrium, I still would like to exam whether there is withdraw of funds during high tail risk

period, leading to price pressure on corporate bond.
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To this end, I run regression of fund holdings on tail risk. Specifically, I collect data from Federal

Reserve flow of funds table L.213. I divide the amount of corporate bond held by mutual funds,

money market funds and exchange-traded funds by the total amount outstanding to compute the

percentage holding. I also detrend the holding level and compute the first difference, which is a

fund flow measure. Table 8 shows the regression result of fund percentage holding on tail risk. We

can see that high tail risk is associated with a low level of fund holding and bad shock to tail risk is

associated with outflow of capital from these funds. This suggest that indeed during high tail risk

period, these funds are subject to withdrawal of capital, which may further lead to price pressure

on the asset.

2.4.3 Equity premium and Bond premium

Idiosyncratic tail risk is an economy-wide macro risk, so it affects credit spread as well as equity

returns. Indeed, my asset pricing model can account for both equity premium and bond premium.

Schmidt (2016) study labor tail risk and its implication on equity return, while my paper mainly

focus on corporate bond premium. Tail risk governs risk premia in general, however, the mechanism

through which it affect equity return and bond return is a bit different. As we know, equity is a

call option on firm asset, so equity holder is not sensitive to tail risk of firm assets. However, bond

holder is particularly sensitive to negative and jump type of risk. In fact, empirical evidence shows

that downside risk is the strongest predictor of future bond returns in the cross section(Bai, Bali,

and Wen (2018)). In the data, third moment of firm growth is highly correlated with tail risk in

labor market, corporate bond will be very sensitive to this macro condition. While with option

effect and time-varying asset tail risk, equity will be less exposed to labor tail risk, comparing to

the case without modeling debt financing.

Massive layoffs and bankruptcy filling are both costly decisions for firms. They are the last

resort when firms are really in bad shape and have no other options. Bond premium should be

naturally more related to labor tail risk than equity because they are all about large and negative

shock to firms instead of day-to-day small fluctuations. In appendix B, I run the stock return

predictability regression. Overall, tail risk in labor market exhibit mild stock return predictability

power in sample, comparing to the traditional predictor such as PD ratio, and a robust out-of-

sample predictability.

3 Asset Pricing Model

In this section, I build a consumption-based model to quantitatively asses the importance of

idiosyncratic tail risk in explaining the level and dynamics of credit spread. I will first use a simple

two period model and some numerical example to illustrate: (1) the mechanism through which

labor tail risk affect asset prices; (2) firm asset idiosyncratic tail risk has positive effect on bond

premium but negative effect on equity premium; (3) the importance of third moment in generating

high credit spread. I then describe the full quantitative model setup. The model consists of two
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building blocks: households with uninsurable idiosyncratic tail risk which determine the stochastic

discount factor and a cross-section of firms that optimally make financing and default decisions.

Next, I will discuss the model parameters and calibrate them to data. Lastly, I report the model

moments and compare the quantitative effect of each model ingredient by shutting down some of

the channels.

3.1 Qualitative Model

3.1.1 Two Period Economy

It is a two period endowment economy populated by a continuum of households index with i.

In period 0, all households are endowed with 1 unit of consumption goods. In period 1, there

are two aggregate states, each will happen with probability 1
2 : (1) In good state, all households

get 1 unit of endowment. (2) In bad state, household i will have endowment exp(ξi(p)), with

E(exp(ξi(p))) = 1, where ξi(p) is i.i.d in the cross section and mean preserving. The second and

higher order moments of the distribution are driven by p.

Households have log utility:

ln(C0,i) + ln(C1,i),

where Ct,i is the consumption of household i at period t. For any financial asset, it should satisfy

the Euler equation:

E0

[
C0,i

C1,i
R

]
= 1. (3)

Every household is marginal investor. Thus, this equation should hold for every household i, whose

SDF is Mi =
C0,i

C1,i
.

3.1.2 Price of Risk

Note that in period 1, both states have 1 unit of aggregate endowment. In other words, there

is no aggregate risk in this economy. If the market is complete, households can trade contracts at

period 0 to insure against the idiosyncratic shock in bad state. As everyone is perfectly insured, we

can use aggregate consumption to compute the common SDF. The state price in both states are

one (qg = 1, qb = 1).

However, if the market is incomplete, idiosyncratic shock would matter. In this example,

I take the extreme case, where households have no risk sharing so they have to consume their

own endowment. As in the Euler equation 3, asset return R has no exposure to ξi(p), I can

integrate out idiosyncratic shocks to compute the common SDF. The state price is qg = 1 and

qb(p) = E
(

1
exp(ξi(p))

)
.

As a numerical example, I set ξi(p) to be a compensated Poisson jump ξi(p) = −dcJi−ζ(p), with

jump intensity p, where ζ(p) is a compensation term to make it mean zero. dc is the jump size when

a tail event occurs. I set it to be 0.8. Figure 8 plots the state price qb with respect to p in complete

and incomplete market cases. I also add a log normal case where I specify ξi(p) = σ(p)εi − 1
2σ(p)2.
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σ(p) is adjusted some that the cross-sectional variance of household endowment in log normal case

is the same as in tail risk case.

[Insert Figure 8 here]

I make three observation from the figure. First, Idiosyncratic risk matters in incomplete market.

The state price qb(p) remain flat at 1 for the complete market case. For the incomplete market

cases, state prices are greater than 1, which indicate that household are averse to idiosyncratic

risk. Second, Tail event probability p serves as a state variable. State price qb and households’

marginal utility are increasing functions with respect to probability p. Third, the quantitative effect

is stronger with tail risk than log normal risk as the state price of tail risk case is always greater

than log normal case.

To understand the last point better, I take Taylor expansion of qb(p). Denote ξ̄ = E(ξi(p)), we

have

qb(p) =
1

exp(ξ̄)
+

2

exp(3ξ̄)
E(ξi(p)− ξ̄)2︸ ︷︷ ︸

2nd moment effect

− 6

exp(4ξ̄)
E(ξi(p)− ξ̄)3 + · · ·︸ ︷︷ ︸

higher moment effects

The coefficient on nth moment takes the form of (−1)n n!
exp((n+1)ξ̄)

, thus, the higher moment effects

are important. In particular, the third moment effect is positive if skewness is negative, which is

exactly what I want to capture from labor income skewness.

3.1.3 Price of Securities

In this section I will use the SDF to price a firm and discuss the asset pricing implications.

Suppose firm’s asset liquidation value at period 1 is Vj . The firm has a exogenous debt level B.

Firm defaults if the liquidation value is lower than B. Thus in period 1, debt holders have payoff

min(Vj , B) and equity holders have payoff: max(Vj −B, 0).

The liquidation value Vj has the following dynamics: In good state, it takes form of V g
j =

exp(ξj(p̄)); in bad state V b
j = exp(ξj(p̄ + φ1p)), with E exp(ξj(p̄ + φ1p)) = 1. In this setup, firm

asset does not have exposure to aggregate shock, the key difference between good and bad state

is the idiosyncratic tail risk. In particular, φ1 determines the comovement of asset tail risk and

household tail risk.

Denote va, vb, ve as asset value, bond value and equity value at period 0 respectively. The asset

value can be computed as

va =
1

2
qgE

(
V g
j

)
+

1

2
qbE

(
V b
j

)
=

1

2
qgE (exp(ξj(p̄))) +

1

2
qbE (exp(ξj(p̄+ φ1p)))

=
1

2
qg +

1

2
qb,

which is the same as if there is no idiosyncratic risk. Since shock to liquidation value is idiosyncratic
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and mean zero, it does not affect the unlevered asset risk premium. In this simple economy, the

valuation of firm assets is equal to a risk free bond. However, the time-varying higher moment

will positively affect bond risk premium and negatively affect equity through default. Denote ξD

(exp(ξD) = B) as the default threshold, the default probability in each state is:

P gD =

∫ ξD

−∞
dξj(p̄),

P bD =

∫ ξD

−∞
dξj(p̄+ φ1p).

As the comovement in higher order moments of idiosyncratic risk φ1 increases, default probability

in bad state P bD increases and Cov(SDF,P bD) increase, which in turn drives up credit risk premium.

With the relation ve = va−vb, we know equity premium will decrease as φ1 increases. This indicate

asset idiosyncratic risk has an option effect that transfer risk from equity to bond.

To numerically illustrate the effect, I keep the endowment jump size dc to be 0.8 and fix jump

intensity p to be 0.3. I specify firm tail risk to be ξj(p̄ + φ1p) = −0.8Jj − ζ(p̄ + φ1p), with jump

intensity p̄ + φ1p. I set p̄ to be 0.1 and jump size of firm to be 0.8. I look at the change of asset,

bond, equity risk premium E(r)− rf by varying comovement parameter φ1.

[Insert Figure 9 here]

As figure 9 shows, when higher moment comovement φ1 increases: (1) asset risk premium

remains at zero because asset tail risk is idiosyncratic shock. (2) Credit risk premium increases

since the default in bad times increases which increase Cov(SDF,P bD). (3) Equity risk premium

decreases and is negative. Because of the option effect, equity actually serves as a hedge to household

tail risk.

To compare the second moment effect and higher moments effect, I also add a log normal case

where I specify ξj(p̄ + φ1p) = σ(p̄ + φ1p)εj − 1
2σ(p̄ + φ1p)

2 adjusted σ(p̄ + φ1p) to have the same

cross-sectional variance as tail risk. Figure 10 plots the credit risk premium and the covariance

between SDF and default. Because tail risk contain more downside risk and large, negative shocks

are all absorbed by debt holders, credit risk premium and Cov(SDF,P bD) are always much higher

in tail risk case than log normal case. This emphasize the importance of taking into account higher

moment comovement in calibration. In addition, the comovement of firm second moment with

labor tail risk is not supported in the data as shown in section 2.2.

[Insert Figure 10 here]

To focus on the different implication of tail risk on equity and bond, my model use some

simplification assumption that produces counterfactual, negative equity premium. In the data,

since the expected growth of cash flow is negatively related to labor tail risk, which will be taken

in account in full model calibration, the equity premium is also positive.
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To summarize, this qualitative model illustrate that: (1) idiosyncratic labor tail risk can affect

SDF if the market is incomplete. (2) It is quantitatively important to take higher order moments

effect into consideration. (3) comovement in tail risk have no effect on asset risk premium, positive

effect on bond and negative effect on equity.

3.2 The Full Model setup

3.2.1 Household

The stochastic discount factor is derived from an exchange economy with a single nondurable

consumption good. The economy is populated by a continuum of households with mass 1. House-

holds have identical recursive preferences and try to maximize their life-time utility by choosing

consumptions and savings:

Ui,t = [(1− β)C
1−1/ψ
i,t + β(EtU

1−γ
t+1 )

1−1/ψ
1−γ ]

1
1−1/ψ

where Ci,t is household i’s consumption. ψ is the elasticity of intertemporal substitution and γ is

risk aversion. From Epstein and Zin (1991), the SDF of each household is given by

Mi,t+1 = exp[θ log β − θ

ψ
∆ci,t+1 + (θ − 1)ri,c,t+1]

where θ = 1−γ
1−1/ψ

The aggregate consumption process Ct (with log consumption denoted as ct) follows:

∆ct+1 = µ+ φcxt+1 + σt+1εc,t+1

where xt is a state variable. Later we will see that this state variable drives both the predictive

component of aggregate consumption growth and the economy-wide conditional probability of id-

iosyncratic tail event. φc > 0 is the loading of consumption growth on predictive component. εc,t+1

is an i.i.d normal shock to the aggregate consumption growth and σt drives stochastic volatility.

In addition to aggregate shock, households are also subject to state-dependent, idiosyncratic

tail risk, which is modeled as a Possion jump with time varying jump intensity. Specifically, their

log consumption growth is modeled as

∆ci,t+1 = ∆ct+1 + dcJi,t+1 − ξ(xt+1)

where Ji,t follows a Poisson distribution with jump intensity λ0 + λ1xt. The size of consumption

decline when a tail event occurs is denoted as dc, which follows a normal distribution with mean µd

and standard deviation σd. State variable xt has mean 0 and standard deviation 1. It determines

the conditional probability of tail event. In calibration, the coefficient λ1 is negative, which reflect

the fact that labor tail risk is counter-cyclical. ξ(xt) is an adjustment term which compensate
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Poisson process dcJi,t. Specifically:

ξ(xt) = (eµd+ 1
2
σ2
d − 1)(λ0 + λ1xt)

3.2.2 State Variable Evolution

State variable evolution follows an AR(1) process with time-varying volatility:

xt+1 = ρxxt + σtεx,t+1

σ2
t+1 = (1− ρσ) + ρσσ

2
t + σtεσ,t+1

where E[xt] = 0, E[σ2
t ] = 1 and the σ2

t follow a square-root process. The covariance matrix for the

shocks is:

Et[εt+1ε
′
t+1] =

σ
2
c 0 0

0 σ2
x ϕx,σσxσσ

0 ϕx,σσxσσ σ2
σ


The innovation to xt and σ2

t is allowed to be correlated. The correlation coefficient ϕx,σ is calibrated

to be negative, which reflect the fact that when tail risk is high (low xt), the volatility of shock to

tail risk also tend to be high.

There are two reasons to introduce the additional complexity of stochastic volatility. The first

reason is to match time series property of labor skewness, which exhibit substantial heteroscedas-

ticity. Second, though the mechanism does not change, quantitatively, I need stochastic volatility

to generate large enough risk premium.

The state variable evolution resembles long-run risk in Bansal and Yaron (2004). however, they

differ in two key aspect. First, state variable xt is far less persistent in my model than long-run

risk8. Second, the mechanism to drive risk premium is completely different. This point will be

clear later in my calibration, the predictive consumption growth contribute very little to the total

risk premium.

3.2.3 Firm Problem

There is a cross section of firms in this economy. Denote Ej,t as the cash flow of firm j at time

t (ej,t as the logarithm of it), the log cash flow growth rate of a typical firm follows:

∆ej,t+1 = µe + φext+1 + σt+1σeεc,t+1 + εj,t+1 + deJj,t+1 − ξe(xt+1)

The form of cash flow process is motivated by the empirical facts. First, Firm cash flow growth is

exposed to state variable xt and consumption shocks εc,t. As expected cash flow growth is negatively

related to labor tail risk, I set φe > 0. Second, the idiosyncratic volatility is not correlated with

labor tail risk, thus the normal shock εj,t have i.i.d distribution N(0, σ2
id) through business cycle.

8In my calibration, the quarterly autocorrelation ρx is 0.88. In long-run risk, its about 0.96.
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Lastly, firm tail risk is modeled as Poisson jump Jj,t+1 with jump size de. Since in the data, labor

tail risk and firm tail risk is highly correlated, the time-varying jump intensity takes the form of

λe,0 + λe,1xt. λe,1 < 0 ensures the jump probability of labor income and firm cash flow comoves.

The last term ξe(xt) is to compensate for jump and Jansen’s inequality effect from normal shock.

Specifically:

ξe(xt) =
1

2
σ2
eσ

2
t+1 +

1

2
σ2
id + (ede − 1)(λe,0 + λe,1xt)

Firm optimally chooses leverage and default to maximize its equity value Vj,t:

Vj,t = max{0,max
Ij,t
{Dj,t + Et[Mt,t+1Vj,t+1]}}

s.t. Bj,t+1 = (1− κ)Bj,t + Ij,t

Dj,t = (1− τ)Ej,t − ((1− τ)c+ κ)Bj,t + Pj,tIj,t

where Dj,t is the dividend and Ij,t is the new debt issuance. The first max in the objective function

reflect that firm will choose to default whenever the equity value become less than zero. The second

max means firm optimally choose debt issuance. Finite-maturity debt is modeled via sinking funds

provisions with existing book value of debt denoted as Bj,t. For each period, a fraction of κ is retired.

In this case, the average maturity of debt is 1
κ . After taxes, debt repayment and refinancing, the rest

of cash flow goes to equity holders as dividend. c is the coupon rate, Pj,t is the price of corporate

bond. Note that interest is tax deductible, so effectively, firm only need to repay (1 − τ)c. This

provides incentive for firms to use leverage.

The market price of debt should satisfy the Euler equation:

Pj,t = Et{Mt,t+1[(1− IVj,t+1=0)(c+ κ+ (1− κ)Pj,t+1) + IVj,t+1=0
(1− αt)Wj,t+1

Bj,t+1
]}

IVj,t+1=0 is a default indicator. Wj,t+1 is cash flow value of the firm, which equals the present value

of unlevered cash flow:

Wj,t = Et

[ ∞∑
s=t

Mt,sEj,s

]
Essentially, if the firm does not default, bond holders can get coupon payment, κ fraction of principle

repayment and (1−κ) of next period bond value. If firm defaults, the bond holders can only claim

1 − α fraction of firm cash flow value, where α is the fraction of loss incurred during bankruptcy.

Bankruptcy cost will be reflected in the bond price, which, in turn, affect equity value. Thus, firm

will choose leverage based trade-off between tax shield and bankruptcy cost.

3.3 Model solution

First, I need to solve the SDF. Every household is marginal investor in this economy and they

value assets using their private SDF. However, since households are ex-ante the same and financial

asset does not expose to idiosyncratic labor income shocks, there will be a common SDF to price
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all the assets in market.

The solution technique is similar to Constantinides and Ghosh (2017). Specifically, conjecture

that autarky is an equilibrium. Let Pi,c,t be household i’s private valuation of his wealth portfolio.

zi,c,t = log(Pi,c,t) − log(Ci,t) is the log price to consumption ratio. Then the log return on wealth

portfolio can be written as

ri,c,t+1 = log(ezi,c,t+1 + 1)− zi,c,t + ∆ci,t+1

Conjecture that log price to consumption ratio is a function of only aggregate state variables,

or put it in another way, the log price to consumption ratio is common among all households

zi,c,t+1 = zc,t+1, then, according to the Euler equation

E{exp[θ log β + (1− γ)∆ci,t+1 + θ(log(ezc,t+1 + 1)− zi,c,t)]} = 1

Time t log price to consumption ratio of households i can be computed as

exp(zi,c,t) = E{exp[θ log β + (1− γ)∆ci,t+1 + θ log(ezc,t+1 + 1)]}

Observe that after integrating out εc,t+1, εx,t+1, εσ,t+1 and Ji,t+1, zi,c,t is a function of only aggregate

state variables. This proves that log price to consumption ratio is common among all the households.

The private SDF can be written as:

Mi,t+1 = exp[θ log β − θ

ψ
∆ci,t+1 + (θ − 1)ri,c,t+1]

The only component that is unique for household i is the idiosyncratic tail shock Ji,t+1. Since no

asset is exposed to this shock, I can integrate it out to get a common SDF. As all households have

the same valuation of assets, they do not have the incentive to trade. This proves that autarky is

an equilibrium.

I solve firm problem by value function iteration. Because equity value and bond value is jointly

determined, I iterate the equity maximization equation and bond equation simultaneously. Details

of computation steps can be found in appendix C.

3.4 Benchmark calibration

Table 9 provides a summary of the calibration parameters. I set elasticity of inter-temporal

substitution to be 2 and risk aversion to be 11, which is broadly consistent with the literature.

Subjective discount factor β is calibrated to match risk-free rate. Mean µc and volatility σc of ag-

gregate consumption is calibrated to match an annual consumption growth rate of 2% and volatility

of 2.5%. The loading on state variable φc in aggregate consumption is calibrated such that condi-

tion on idiosyncratic tail event does not occur, the consumption process for individual household

is i.i.d.
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[Insert Table 9 here]

Parameters for individual household’s consumption dynamics are largely borrowed from Schmidt

(2016). In his paper, state variable dynamics parameters, namely, persistence of xt and σ2
t , correla-

tion and volatility of shocks, are obtained by estimating a VAR model to fit the dynamics of labor

income growth skewness. Parameters for consumption jump intensity and jump size are obtained

by estimating a parametric labor income model to match the GOS moments. Aggregate dynamics

are discretized into 25 state, as it is an AR1 with time varying volatility, I use the moment matching

method in Farmer and Toda (2017). See details in appendix D.

I estimate the parameters for conditional probability of firm cash flow jump using Compustat

data of sales growth. Details of the estimation is relegated to appendix E. Estimation shows that

average quarterly jump probability is about 3%, and 1 standard deviation increase in aggregate

state xt is associated with 2% decrease in jump probability. Whenever a jump occurs, the log cash

flow drops by 40%. I truncate the jump intensity to make it greater or equal to zero.

I calibrate φe and σe to broadly match the equity premium. Bankruptcy cost α is set to be 0.5

to target the historical recovery rate. To study the five year debt, κ is set to be 0.05 so that the

average maturity of bond is 20 quarters. I adjust the coupon rate to be get a reasonable leverage

ratio, and also adjust the idiosyncratic volatility to target the 5-year cumulative default rate around

2%.

3.5 Calibration Results

3.5.1 Benchmark Calibration

I simulate a cross section of 5000 firms with 10000 time periods sample to compute the model

implied asset pricing moments. Table 10 shows the unconditional moments generated by the model

and corresponding sample moments in the data. The benchmark calibration matches the data

moments quite well. The model generates a credit spread as high as 1.03% with reasonable 5-year

cumulative default of 2.02 % and recovery rate of 43.15%, which are quite close to data counterpart.

The numbers of equity premium, equity volatility and risk-free rate are also in a reasonable range.

In this sense, my model is able to simultaneously account for the credit spread puzzle and equity

premium puzzle. The leverage ratio is bit lower than the data counterpart which resolves the

under-leverage puzzle. In my model, the time-varying labor tail risk makes default cost to be large.

Therefore, firms choose a low leverage ratios.

[Insert Table 10 here]

To investigate the dynamics of firm financing and default decision, I plot the conditional mo-

ments in Figure 11, the x axis is the value of xt, the y axis is the value of σ2
t , and the z axis is the

value of conditional moments. The 25 bars represent 25 discretized aggregate state. As high tail

risk (low xt) is usually associated with high volatility of shocks (high σt), the grids are not evenly

spaced. The market leverage is counter-cyclical. As tail risk become higher, the market value of
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firm decreases. Since it is costly for firm to deleverage, the market leverage increase substantially

in bad times. The 5-year cumulative default rate is also strongly counter-cyclical, from about 0.12

in the worst state and near 0 in the best state. The recovery rate is some how constant during the

business cycle (In the best two state there is no default so the recovery rate show up as 0). In this

sense, credit spread is largely generated by counter-cyclical risk premia and counter-cyclical default

rate in my model. Cyclicality of recovery rate does not play much role here.

[Insert Figure 11 here]

In figure 12, I plot the conditional default rate and conditional covariance between default and

SDF with respect to state variable xt. We make two observations: first, default probability is a

decreasing function of xt, which means when labor tail risk is high, firm is more likely to default.

Thus, in the right sub-figure, covariance bewteen default probability and SDF is always positive.

This contributes to generate the level of credit spread. Second, as xt become lower, the default

probability become more sensitive to change of xt. This reflect the fact that when labor tail risk

is high, firms are already close to default, a negative shock will increase the default probability a

lot. Thus, in the right sub-figure, covariance is a decreasing function of xt. This contributes to

generate the comovement between labor tail risk and credit spread.

[Insert Figure 12 here]

My model can also simultaneously account for the stock return predictability and credit spread

dynamics. Table 11 reports time series regression results in data and model. Panel A reports the

result of credit spread regression. In the model, skewness index also has high explanatory power on

the dynamics of credit spread. The magnitude of comovement is somehow stronger in the model

than what we observe in data. 1 standard deviation increase in skewness is associated with 51

basis point decrease in credit spread for the median case. But the data estimate is still within the

range of 90% confidence interval. The stronger relationship is probably caused by the fact that, in

my model, the only macro risk that drives the credit spread is labor tail risk. Panel B reports the

result of stock return predictability regression. Overall, the data indicate that high skewness index

predicts a lower stock return in the future. My model also generate stock return predictability.

The median coefficient is close to the data estimates and r squared also increase with predictive

horizon.

[Insert Figure 11 here]

3.5.2 Credit Spread Decomposition

The model features idiosyncratic tail risk on household side and firm side, predictive component

in aggregate consumption growth, and time-varying volatility on aggregate state. In this subsection,

I assess how much of the bond premium can be attributed to each channel. Specifically, I shut down
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some of the channels and recalibrate the model to see how the model performs. I set de = 0 to shut

down cash flow jumps on firm side, set σt = 1 to shut down time-varying volatility on aggregate

state, set µd = 0 and σd = 0 to shut down idiosyncratic tail risk on household side, and set φc = 0

to shut down the predictive component in aggregate consumption growth. I keep other parameters

the same and adjust the idiosyncratic volatility σid and default loss α to keep the cumulative default

and recovery rate as in benchmark calibration.

[Insert Table 12 here]

Table 12 shows the decomposition of credit spread. In model (1), firm cash flow jump is

shut down. The credit spread decrease about 29 bps comparing to benchmark calibration, almost

1/3 of the total credit risk premium. This shows that time-varying tail risk of firm cash flow is

very important in generating the high credit spread. The conditional probability of jump rises

substantially in bad times. This contributes a lot to counter-cyclical default rate and in turn

generate high credit spread. Notably, since the cash flow jump is purely idiosyncratic, the unleveled

equity premium does not change, but levered equity premium increase a little bit through the option

effect. This indicates that cash flow jump shifts some of the risk premium from equity side to bond

side. Equity is a call option on firm asset, so equity holders are not very sensitive to downside risk.

Bond holders are just the opposite. Intuitively, in bad times the firm is more likely to experience

jump type of shock and default, this type of shock is largely absorbed by bond holder, which makes

the bond very risky.

As I mentioned previously, introducing time-varying volatility on aggregate state xt is just for

quantitative purpose. This point is clear in model (2). If I shut down this channel, credit drops

another 26 bps. The unlevered equity premium also decrease. Since, skewness index in the data is

not very persistent, without time-varying volatility channel, the risk premia in general will be low.

In model (3), I keep the time-varying volatility and shut down the idiosyncratic tail risk on

household side. In this case, idiosyncratic risk channel is shut down, but predictive consumption

growth channel is still in play. Compared to model (1), credit spread decreases about 41 bps, which

can be attributed to the negative relation between labor tail risk and firm cash flow growth. We also

observe that unlevered premium drop significantly. That means idiosyncratic tail risk of household

plays a very important role in generating high risk premium. Though the state variable dynamics

is similar to long-run risk in Bansal and Yaron (2004), the mechanism here is quite different.

Model (4) only keeps i.i.d business cycle risk. In this case, the credit spread is about 23 bps,

which is approximately the expected default loss. In this regard, the co-movement of idiosyncratic

tail risk on household side and firm fundamentals can explain nearly 80% of observed credit spread.

4 Conclusion

In this paper, I show that idiosyncratic tail risk is a potential key determinants of the credit

spreads. Empirically, the skewness of cross-sectional labor income growth is highly correlated with

24



the mean and skewness of firm growth. Labor tail risk can explain a large fraction of credit spread

fluctuation. 1 standard deviation increase in tail risk is associated with about 33 basis point increase

in credit spread. I develop a endowment-based model with a single process that drives both the time

variation of idiosyncratic tail risk on household side and firm asset. The model, whose parameters

are disciplined by the data, can quantitatively account for the level and dynamics of credit spread.
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Figure 1. Corporate Default, Credit Spread and Tail Risk.

This figure plots the quarterly time series of idiosyncratic tail risk in labor market, Moody’s Baa-Aaa credit spread.
Both time series are normalized to have mean 0 and variance 1. The solid line is idiosyncratic tail risk in labor
market, as measured by the negative of skewness index constructed from cross-sectional distribution of labor income
growth rates (details of skewness index refer to appendix A), the dashed line is Moody’s Baa-Aaa credit spread and
the blue bars are annual corporate bond default rate of all rated firms (data from Moody’s (2018)). The sample spans
1960Q1-2013Q4.

1958 1968 1978 1988 1998 2008
2

1

0

1

2

3

4

5

C
re

di
t S

pr
ea

d 
/ T

ai
l R

is
k

tail risk
credit spread

0.00

0.01

0.02

0.03

0.04

0.05

D
ef

au
lt 

R
at

e

default rate

26



Figure 2. Skewness of Cross-sectional Labor Income Growth

This figure shows annual time series of cross-sectional 1-year trailing labor income growth skewness. The shaded area
is the recession period. The sample spans 1978-2010.
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Figure 3. Tail Risk in Labor Market.

This figure shows the time series of proxies for labor market tail risk. The solid black line is the negative of skewness
index, the solid gray line is the initial claim and the dashed black line is the unemployment rate. The sample of
skewness index and unemployment rate spans 1960Q1-2013Q4, and the sample of initial claims spans 1967Q1-2013Q4.
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Figure 4. Skewness: by Recent Labor Income Percentile

This figure shows the cross-sectional skewness (kelly skewness) of 1-year labor income growth by recent labor income
percentile. An individual’s recent labor income rank is based on his past 5-year average labor income. The figure
reports the mean skewness of sample from 1981 to 2012.
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Figure 5. Skewness: Selected Labor Income Percentile Time Series.

This figure shows the time series of cross-sectional 1-year labor income growth skewness of selected recent labor
income percentile (P10, P50 P90, and P95). An individual’s recent labor income rank is based on his past 5-year
average labor income. The sample spans 1981 to 2012.
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Figure 6. A Horse Race of Univariate Regression R2.

This figure shows the univariate regression R2 of credit spread on skewness index (constructed using 3PRF or IMSE)
as well as on 97 macro variables and 8 control variables. The R2 are sorted in descending order, the red bar and blue
bar show the univariate regression R2 from 3PRF skewness index and IMSE skewness index respectively and the rest
of the variable are displayed with light blue bars. The sample spans 1960Q1-2013Q4.
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Figure 7. Distribution of Simulated Univariate Regression R2.

This figure shows the empirical distribution of univariate regression R2 of credit spread on simulated indices. The
indices are constructed using 97 macro variables and random weights which are drawn from a uniform distribution on
[-1,1]. The red line and blue line show the univariate regression R2 from 3PRF skewness index and IMSE skewness
index respectively. The sample spans 1960Q1-2013Q4.
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Figure 8. Qualitative Model: State Prices

This figure plots the state price qb with respect to the parameter p in three cases (complete market, incomplete market
with tail risk and in complete market with log normal risk). p drives the second and higher moments of idiosyncratic
shocks. The parameter for log normal risk is adjusted to have the same cross-sectional variance of endowment as the
tail risk case.
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Figure 9. Qualitative Model: Risk Premium

This figure plots the risk premium E(r) − rf with respect to parameter φ1 for asset, bond and equity in the two
period model. φ1 drive the higher moment comovement between household tail risk and firm tail risk.
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Figure 10. Qualitative Model: Credit Risk

This figure plots the credit risk premium and covariance between SDF and default with respect to the parameter
phi1 in tail risk and log normal risk cases. φ1 drive the higher moment comovement between household tail risk and
firm tail risk. The parameter for log normal risk is adjusted to have the same cross-sectional variance of endowment
as the tail risk case.
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Figure 11. Benchmark Calibration: Conditional Moments

This figure plots the conditional statistics of simulated data in each state. The x axis is the value of xt, the y axis is
the value of σ2

t and the z axis is the average value in each state (credit spread, leverage ratio, recovery rate, cumulative
default rate, recovery rate).
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Figure 12. Conditional Default Rate and Covariance with SDF

This figure plots the cumulative default rate and Covt(Mt+1, IVj,t+1=0) conditional on state variable xt. I fit a
polynomial on simulated result for display purpose.

2 1 0 1 2
State Variable x

0.000

0.005

0.010

0.015

0.020

0.025

D
ef

au
lt 

Pr
ob

ab
ili

ty

Default Probability

2 1 0 1 2
State Variable x

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

C
ov

ar
ia

nc
e

Covariance

33



Table 1. Summary Statistics of Labor Income Growth Distribution.

This table reports the statistics from the cross-section of 1-year and 5-year log labor income growth, which are based
on the 1978-2011 annual data series from GOS. The second column reports the average statistics over the whole
sample period, third column is based on expansion period, forth column recession period and the last column reports
the difference between the recession and expansion. Recession has the same definition as in GOS.

1-year log labor income growth

All Expansion Recession R-E

Median 2.02 2.42 1.22 -1.20
10th Percentile -43.45 -40.76 -48.83 -8.07
90th Percentile 47.44 49.87 42.57 -7.29
90-10 Percentile Spread 90.89 90.63 91.40 0.78
Left tail 45.47 43.18 50.05 6.87
Right tail 45.41 47.44 41.35 -6.09
Kelley’s Skewness 0.11 4.79 -9.24 -14.03
Mean 1.92 3.28 -0.80 -4.08
Std 53.21 52.95 53.73 0.77
Skewness -30.70 -22.82 -46.45 -23.64

5-year log labor income growth

All Expansion Recession R-E

Median 10.32 13.31 7.48 -5.83
10th Percentile -63.08 -53.19 -69.40 -16.20
90th Percentile 84.81 95.29 74.19 -21.10
90-10 Percentile Spread 147.88 148.49 143.59 -4.90
Left tail 73.39 66.50 76.88 10.37
Right tail 74.49 81.98 66.72 -15.27
Kelley’s Skewness 0.77 10.43 -7.07 -17.50
Mean 10.58 16.94 5.10 -11.84
Std 72.86 73.00 71.50 -1.50
Skewness -23.59 -5.40 -38.00 -32.60
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Table 2. Summary Statistics of Sales Growth Distribution.

This table reports the statistics from the cross-section of quarterly log sales growth (the log difference of quarterly
sales this year and sales at the same quarter of last year), which are computed from the 1978-2014 quarterly data in
Compustat. The second column reports the average statistics over the whole sample period, third column is based on
expansion period, forth column recession period and the last column reports the difference between the recession and
expansion. The statistics is classified to be in recession if at least 3 quarters over which the growth rate is computed
is in recession quarters defined by NBER.

Quarterly log sales growth

All Expansion Recession R-E

Median 7.30 8.12 -2.70 -10.82
10th Percentile -22.37 -20.60 -43.79 -23.20
25th Percentile -3.86 -2.67 -18.23 -15.57
75th Percentile 19.77 20.63 9.43 -11.20
90th Percentile 39.89 41.03 26.14 -14.89
90-10 Percentile Spread 62.26 61.62 69.93 8.31
50-10 Percentile Spread 29.66 28.72 41.09 12.37
50-25 Percentile Spread 11.15 10.79 15.53 4.74
90-50 Percentile Spread 32.59 32.90 28.84 -4.06
75-25 Percentile Spread 12.47 12.50 12.13 -0.37
Kelley’s Skewness 4.75 6.56 -17.15 -23.70
Mean 8.01 9.15 -5.70 -14.84
Std 24.09 23.88 26.68 2.80
Skewness 8.00 12.53 -46.77 -59.30
Kurtosis 3.33 3.34 3.25 -0.08

Table 3. Correlation of Skewness Index and Fundamental Moments.

This table shows the correlation of skewness index and firm fundamental moments. Firm fundamental (sales growth,
gross profit growth, employment growth) moments are calculated using cross-sectional data from Compustat. Sales
growth and gross profit are in quarterly frequency (1975Q4-2013Q4 and 1976Q4-2013Q4 respectively). Employment
is in annual frequency (1964-2013).

vairiable mean std skewness median range left tail right tail kelly

Sales growth 0.48 0.03 0.47 0.42 0.00 -0.24 0.23 0.52
Gross profit 0.56 -0.05 0.46 0.58 -0.06 -0.23 0.14 0.42
Employment 0.50 -0.09 0.48 0.45 -0.11 -0.34 0.19 0.49
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Table 4. Fundamental Risk in the Cross Section.

This table shows the firm fundamental risk within market-to-book and size sorted portfolio. The second column
shows the corporate bond yield of each portfolio (numbers are from KUEHN and Schmid (2014)). The rest columns
shows statistics of fundamental risks. I first compute the cross-sectional mean, volatility and skewness of sales growth
within each group, and report the time series average (numbers in percentage) and their correlation with skewness
index in labor market. The sample covers 1975Q4-2013Q4.

growth rate volatility skewness

Portfolio Credit Spread mean corr mean corr mean corr

Panel A: Market-to-Book Sort

1(Low) 315 3.0 0.50 21.1 0.01 -4.1 0.52
2 204 6.6 0.40 17.8 0.02 3.3 0.46
3 139 7.9 0.48 17.8 -0.14 5.7 0.46
4 90 9.7 0.49 18.5 -0.09 7.5 0.49
5(High) 53 13.3 0.44 24.7 0.03 9.6 0.36

Panel B: Size Sort

1(Small) 371 6.3 0.54 24.7 0.02 0.7 0.55
2 201 9.8 0.44 18.3 -0.03 9.9 0.52
3 114 10.1 0.45 16.1 -0.18 12.0 0.45
4 71 9.3 0.46 15.1 -0.13 10.3 0.38
5(Large) 44 8.6 0.35 13.1 -0.18 12.5 0.34
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Table 5. Credit Spread Regression: Level.

This table shows the results of the regression

CSt = β0 + β1St + γXt + εt.

The dependent variable is credit spread. St is the skewness index and Xt is a vector of controls, including market
volatility, idiosyncratic volatility, 3 month t-bill rate, term spread, aggregate market leverage, cyclical adjusted price
to s ratio, growth of industrial production and unemployment rate. All independent variables are standardized to
have mean 0 and standard deviation of 1. For each regression, the table reports OLS estimates (numbers are in
percentage) and Newey-West t-statistics with 4 lags. The sample spans 1960Q1-2013Q4.

Baa-Aaa Credit Spread

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.03 1.09 1.03 1.06 1.03 1.03 1.05 1.03
(27.26) (24.45) (22.25) (34.69) (30.96) (38.69) (31.20) (35.79)

skewness index -0.33 -0.22 -0.31
-(7.71) -(3.29) -(7.05)

Initial Claims 0.30 0.09 0.19
(7.53) (1.63) (3.21)

Unemployment 0.28 0.13 0.20
(5.51) (3.98) (4.35)

Volatility 0.19 0.16 0.19 0.16
(3.05) (3.31) (3.24) (3.34)

IVOL 0.01 -0.07 -0.05 0.01
(0.11) -(1.10) -(0.62) (0.22)

Treasury yield 0.10 0.06 0.02 0.12
(1.34) (1.08) (0.37) (2.06)

Term spread 0.12 0.06 0.03 0.03
(1.75) (1.32) (0.58) (0.69)

Leverage -0.03 -0.06 -0.09 0.01
-(0.59) -(1.49) -(1.39) (0.29)

CAPE -0.18 -0.11 -0.09 -0.06
-(3.36) -(2.40) -(1.38) -(0.93)

IPG -0.08 0.13 -0.07 -0.09
-(2.60) (4.37) -(1.93) -(3.23)

Observation 216 188 216 188 216 216 188 216
R2 0.53 0.44 0.38 0.65 0.61 0.70 0.61 0.68
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Table 6. Credit Spread Regression: Change.

This table shows the results of the regression

∆CSt = β0 + β1∆St + γ∆Xt + εt.

The dependent variable is change in credit spread. ∆St is change in skewness index and ∆Xt is a vector of controls,
including change in market volatility, idiosyncratic volatility, 3 month t-bill rate, term spread, aggregate market lever-
age, cyclical adjusted price to s ratio, growth of industrial production and unemployment rate. For each regression,
the table reports OLS estimates (numbers are in percentage) and Newey-West t-statistics with 4 lags. The sample
spans 1960Q1-2013Q4.

Baa-Aaa Credit Spread

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.03) (0.10) -(0.09) -(0.12) -(0.06) (0.00) (0.02) -(0.06)

skewness index -0.15 -0.15 -0.12
-(2.80) -(2.20) -(1.97)

Initial Claims 0.20 -0.02 0.08
(3.86) -(0.23) (1.38)

Unemployment 0.29 0.21 0.12
(2.72) (1.56) (1.07)

Volatility 0.09 0.06 0.10 0.09
(1.76) (1.90) (1.58) (1.76)

IVOL 0.10 0.10 0.09 0.09
(2.39) (2.42) (1.90) (2.09)

Treasury yield -0.42 -0.39 -0.40 -0.39
-(3.58) -(3.60) -(3.28) -(3.06)

Term spread -0.17 -0.16 -0.18 -0.17
-(2.76) -(2.83) -(3.08) -(2.76)

Leverage 0.04 0.07 0.05 0.06
(0.45) (1.04) (0.56) (0.78)

CAPE -0.04 0.00 -0.03 -0.03
-(0.50) (0.03) -(0.35) -(0.33)

IPG -0.01 0.04 -0.01 -0.01
-(0.84) (1.13) -(0.34) -(0.82)

Observation 215 187 215 187 215 215 187 215
R2 0.20 0.09 0.07 0.24 0.33 0.39 0.34 0.34
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Table 7. Tail Risk and Liquidity.

This table shows the results of the regression

CSt = β0 + β1St + β2Nt + β3StNt + εt.

The dependent variable is credit spread. St is the skewness index and Nt is a market wide liquidity measure from
Hu et al. (2013). β3 captures the interaction effect of tail risk and liquidity. (1)-(3) shows the level regression and
(4)-(6) shows the first difference regression. All independent variables are standardized to have mean 0 and standard
deviation of 1. For each regression, the table reports OLS estimates (numbers are in percentage) and Newey-West
t-statistics with 4 lags. The sample covers 1987Q1-2013Q4.

Baa-Aaa Credit Spread
Level Change

(1) (2) (3) (4) (5) (6)

Intercept 0.98 0.97 0.95 -0.01 0.00 -0.01
(22.56) (22.11) (22.26) -(0.24) -(0.17) -(1.05)

Skewness index -0.33 -0.24 -0.17 -0.24 -0.13 -0.12
-(4.35) -(3.34) -(2.26) -(2.61) -(2.66) -(2.40)

Noise bp 0.12 0.07 0.19 0.18
(2.37) (1.40) (6.02) (7.36)

Skewness×Noise -0.04 -0.04
-(2.65) -(2.77)

Observation 108 108 108 107 107 107
R2 0.56 0.61 0.64 0.36 0.54 0.58

Table 8. Fund Percentage Holding.

This table shows the regression results of the fund percentage holding on tail risk proxies. The dependent variable
is the total percentage corporate bond holding by money market funds, mutual funds and exchange-traded funds.
(1)-(3) shows the level regression and (4)-(6) shows the first difference regression. For the level variable, I remove the
linear trend of the raw data and use the residual as dependent variable. All independent variables are standardized
to have mean 0 and standard deviation of 1. The sample covers 1987Q1-2013Q4.

Fund Percentage Holding

Level Change

(1) (2) (3) (4) (5) (6)

Skewness index 0.81 0.07
(6.47) (2.22)

Initial Claim -0.76 -0.11
-(6.84) -(1.63)

Unemployment -0.74 -0.09
-(5.81) -(0.90)

Observation 216 188 216 215 187 215
R2 0.16 0.20 0.13 0.02 0.01 0.00
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Table 9. Summary of Calibration Parameters.

This table summarize the parameters of benchmark calibration.

Parameter Value Description

γ 11 Risk aversion coefficient
ψ 2 Intertemporal elasticity of substitution
δ 0.9745 Rate of time preference

λ0 0.0065 Average idiosyncratic jump intensity
λ1 -0.0026 Sensitivity to xt
µd -0.18 mean of consumption decline in a idiosyncratic tail event
σd 0.115 std of consumption decline in a idiosyncratic tail event
ρx 0.8847 Persistence of xt
ρσ 0.9446 Persistence of σ2

t

σx
√

1 − ρ2x Standard deviation of shock to xt
σσ 0.1674 Standard deviation of shock to σ2

t

σσ -0.66 Correlation of shocks to xt and σ2
t

µc 0.005 Average growth rate of consumption
φc 0.000414 Loading of consumption growth on xt
σc 0.0125 Standard deviation of shock to consumption growth

µe 0.005/4 Average growth rate of firm cash flow
φe 0.0225 Loading of cash flow growth on xt
σe 0.0125 Standard deviation of systematic shock to cash flow growth
σid 0.105 Standard deviation of idiosyncratic shock to cash flow growth
λe,0 0.03 unconditional probability of cash flow jump
λe,1 -0.02 Sensitivity of cash flow jump probability to xt
de -0.4 Cash flow decline given a idiosyncratic firm tail event

c 0.02 Coupon rate of bond
τ 0.14 Corporate tax rate
α 0.5 Bankruptcy cost
κ 0.05 Inverse debt maturity ( 1

κ
as average bond maturity)
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Table 10. Benchmark Calibration: Unconditional Moments.

This table reports unconditional moments generated by the benchmark calibration. Sample moments of equity
premium and risk-free rates are from Bansal, Kiku, and Yaron (2012), Credit spread data are from Huang and Huang
(2012), Historical default rates are from Ou, Chiu, and Metz (2011). All numbers are in percentage expect for price
to dividend ratio.

Moments Data Model

Credit spread 1.03 1.03
Cum. default rate 2.06 2.02
Recovery rate 44.57 43.15
Leverage ratio 28.2 24.1

Equity premium 7.09 7.16
Volatility of equity premium 20.28 21.65
Log price to dividend ratio 3.36 3.95

Risk-free rate 0.57 0.86
Volatility of risk-free rate 2.86 1.87
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Table 11. Model: Predictability.

This table reports predictive regression results in data and model. For credit spread, I run univariate regression
of credit spread on contemporaneous skewness index. For equity return, I regress future (1 quarter, 1 year, 3 year
and 5 year) CRSP value weighted stock return on skewness index. The sample period covers 1960Q1-2013Q4. To
compute the model counter-part. I simulate the model 1000 times with the same sample size as data and run the
corresponding regression. I report the simulation median as well as percentile values.

Credit Spread

Data Model

Estimate Median 2.5% 5.0% 95.0% 97.5%

skewness index -0.33 -(7.71) -0.51 -0.73 -0.72 -0.24 -0.24
R2 0.528 0.739 0.587 0.627 0.857 0.861

Stock Return

Forecasting 1 quarter return
skewness index -2.76 -(0.80) -2.64 -8.02 -7.65 2.83 3.82
R2 0.003 0.005 0.000 0.000 0.024 0.030
Forecasting 1 year return
skewness index -3.80 -(2.61) -2.31 -7.12 -6.55 2.65 3.35
R2 0.049 0.016 0.000 0.001 0.084 0.116
Forecasting 3 year return
skewness index -1.47 -(2.03) -2.07 -5.29 -4.70 1.42 2.48
R2 0.024 0.036 0.000 0.001 0.190 0.233
Forecasting 5 year return
skewness index -2.24 -(4.35) -1.59 -4.14 -3.99 1.28 1.80
R2 0.111 0.042 0.000 0.001 0.246 0.318
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Table 12. Decomposition of Credit Spread.

This table shows the decomposition of credit spread generated by the benchmark calibration by shutting down some
of the channels. For all cases, I recalibrate idiosyncratic volatility and default loss to match the cumulative default
rate and recovery rate to the benchmark case.

Benchmark (1) (2) (3) (4)

Credit spread 1.03 0.74 0.48 0.33 0.23
Unlevered equity premium 4.39 4.39 3.27 2.31 0.97
Levered equity premium 7.16 7.39 6.04 5.16 2.73

Firm: cash flow jump Y N N N N
Time varying volatility of x Y Y N Y N
Household: tail risk Y Y Y N N
Aggregate consumption: loading on x Y Y Y Y N
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A Skewness Index Construction

This sections list the details in constructing the skewness index. I use a structural labor income

model to construct the index as in Schmidt (2016). Specifically, assume quarterly log labor income

follows
wit = αi + βiage

i
t︸ ︷︷ ︸

profile heterogeneity

+ εit︸︷︷︸
transitory shock

+ ξit︸︷︷︸
permanent component

ξit = ξit−1 + ηit

E[(ηit)
3|yt−1] = a+ b′yt−1

(4)

where ξit is permanent component of labor income, which follows a random walk. The third moment

of the shock to permanent component follows a linear structure on lagged macro variables, which

captures the conditional ex-ante risk faced by households. αi and βi allows for heterogeneity in

income levels and growth rates and εit is a state independent transitory shock. Denote wiA,t =

log(W i
A,t) as the log annual wage, where W i

A,t is a trailing four quarter moving average of quarterly

labor income and can be observed every four quarters. It can be proved that the skewness of

cross-sectional annual labor income growth can be expressed as

E((wiA,t − wiA,t−4 − E(wiA,t − wiA,t−4|Ft−1))3|Ft−1) ≈ c+ b′φ(L)yt−1 (5)

where φ(L) = 1
4

3
+ 1

2

3
L+ 3

4

3
L2 + L3 + 3

4

3
L4 + 1

2

3
L5 + 1

4

3
L6 is a lag operator on macro variables.

The macro variables considered here are 97 monthly variables from global insight, data from

1960-2013 can be find in Wu and Xia (2016). I list the variable details in the Appendix table

13. I aggregate the monthly variable to quarterly variable by taking the end quarter value for level

variables and taking the log sum for change variables. Since the number of macro variables is greater

than the time series, I use three-pass regression filter (3PRF) method (Kelly and Pruitt (2015)) or

forecast combination method to estimate the model. The 3PRF can extract the relevant information

from noisy predicting variables and optimally combine them, while the forecast combination method

takes the inverse of mean-squared error(IMSE) as weights and combine the univariate forecast. Due

to the efficiency of 3PRF, I treat 3PRF method as benchmark in constructing the skewness index.

As our main focus is the time series fluctuation of skewness, I demean both the dependent variable

and independent variables and estimate the coefficient b, therefore, the constructed skewness index

has mean 0 but capture the time variation of skewness.

Table 14 shows the goodness of fit for different constructions. We can see that the 3PRF

method achieve an R2 of 70% in fitting the annual time series of skewness. The R2 drops to

52% when I switch to IMSE method. For the sub-set of macro variables, real activity has the

highest explanatory power for skewness, followed by employment and real inventory. The aggregate

consumption explains only 29.6% of skewness, which indicates that the information contained in

the cross-sectional skewness of labor income growth is largely orthogonal to aggregate consumption.

The correlation of skewness indices constructed by 3PRF and IMSE is as high as 0.92.
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[Insert Table 14 here]

Figure 13 plots the constructed skewness indices with top 5 highest R2. We can see that the

indices move in lockstep even before 1978, where our first annual skewness data point is available.

This means the skewness indices are not just capturing spurious information by over-fitting the

data, but contain useful information in terms of the idiosyncratic jump risk. We can also observe

that the skewness index is highly pro-cyclical and always has a significant drop during NBER

recession period.

[Insert Figure 13 here]

B Stock Return Predictability

In this section, I exam the predictive power of idiosyncratic tail risk on future equity premium.

The literature has documented a large set of macro or financial variables that can predict future

stock returns. Welch and Goyal (2007) provide a comprehensive study of the existing equity

premium predictor. I treat the predictors in their study as controls or benchmark, and run in-

sample and out-of-sample regression to look at the stock return predictability of labor tail risk.

Table 15 shows the in-sample regression result. I regress 1-year ahead CRSP value-weighted

market return on proxies for tail risk (skewness index, initial claims and unemployment) as well

as other controls. (1)-(3) shows the univariate regression. The coefficients of all three proxies are

significant at 5% level and their magnitude is similar. One standard deviation increase in tail risk

is associated with about 4% increase in next year’s equity return. However, after controlling for

other predictors, the coefficient become insignificant as shown in (5)-(7).

Table 16 reports the out-of-sample regression r squared. The out-of-sample r squared (oos R2

) is defined as:

R2
oos = 1−

∑
(yt − ŷt,model)2∑
(yt − ŷt,mean)2

where ŷt,model is the predicted value from OLS model and ŷt,mean is the predicted value from

historical mean model. Since skewness index is constructed using the whole sample which is subject

to look ahead bias, I only use unemployment and initial claims in this exercise. Comparing to other

variables, unemployment has the most robust out-of-sample performance. Its oos R2 is positive for

all predictive horizons and reaches nearly 40% for 5 year horizon. The performance of initial claims

is a bit weaker but still better than most of the other variables. Overall, tail risk in labor market

do exhibit robust stock return predictability.

C Computation Detail

This section shows the detailed steps of solving the firm problem. Firm value Vj,t is a func-

tion of aggregate state variable xt, σt, bond level Bj,t and Ej,t. Denote (xt, σt) as ωt, then
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we write Vj,t(ωt, Bj,t, Ej,t). By inspecting the firm problem, we can see that if a issuance plan

{Ij,t(ωt, Bj,t, Ej,t)}, which is a collection of contingent action from period t to ∞, is feasible for

(ωt, Bj,t, Ej,t) with firm value Ṽ , the issuance plan {E
′
j,t

Ej,t
Ij,t(ωt,

E′j,t
Ej,t

Bj,t, E
′
j,t)} is also feasible for

(ωt,
E′j,t
Ej,t

Bj,t, E
′
j,t) with corresponding firm value

E′j,t
Ej,t

Ṽ . Thus, if issuance plan {I∗j,t(ωt, Bj,t, Ej,t)}

maximize firm value in state (ωt, Bj,t, Ej,t), then {E
′
j,t

Ej,t
I∗j,t(ωt,

E′j,t
Ej,t

Bj,t, E
′
j,t)} also maximize firm value

in state (ωt,
E′j,t
Ej,t

Bj,t, E
′
j,t). This means firm value is homogeneous of degree one in term of Ej,t.

Therefore, we can scale all the firm variable by Ej,t to simplify the representation. For ease of

notation, I omit the subscript j for the following analysis. Define:

bt+1 =
Bt+1

Et
, vt =

Vt
Et
, dt =

Dt

Et
, it =

It
Et
, wt =

Wt

Et
,

Divide the both side of equity function by Et:

v(bte
−∆et , ωt) = max{0, dt + Et[Mt,t+1e

∆et+1v(bt+1e
−∆et+1 , ωt+1)]} (6)

the value function is v(bt, e
∆et , ωt). The state variable we need to track is bt, ∆et and aggregate

state ωt. Or more specifically v(bt, εc,t, εj,t, Jj,t, ωt).

The bond price should satisfy:

Pt = Et{Mt,t+1[(1− Ivt+1=0)(c+ κ+ (1− κ)Pt+1) + Ivt+1=0e
∆et+1

(1− αt)wt+1

bt+1
]} (7)

where wt is the cum dividend value of the unleveled firm. The optimization problem is subject to

the constraint
bt+1 = (1− κ)bte

−∆et + it

dt = (1− τ)− ((1− τ)c+ κ)bte
−∆et + Ptit

since the bond price depend on the next period bond choice of the firm, the bond price Pt(ωt, bt+1)

is a function of aggregate state and choice variable bt+1

I use value function iteration to solve the model. Price to consumption ratio can be found by

iterating the function:

pct = E{exp[θ log β + (1− γ)∆ci,t+1 + θ log(pct+1 + 1)]}

Thus, we can get the functional form of SDF Mt+1. The cum dividend unlevered price to cash flow

ratio wt can be found by iterating the function:

wt = 1− τ + E[Mt+1wt+1∆Et+1]

The firm problem can be solved by iterating equation 6 and equation 7 simultaneously.

46



D Discretizing the Aggregate State

The aggregate state is a AR(1) process with time varying volatility, and shocks to xt and

σt are correlated. Directly apply Gauss-Hermite quadrature will be too costly. To facilitate the

computation, I discretized the aggregate process into a Markov process. The basic strategy is

to transform the original system into two orthogonal process, use the moment matching method

proposed by Farmer and Toda (2017) to discretize the process into a Markov chain and then

reconstruct the original state variables.

Specifically, rewrite the aggregate state evolution into a VAR system[
σ2
t+1

xt+1

]
=

[
1− ρσ

0

]
+

[
ρσ 0

0 ρx

][
σ2
t

xt

]
+ σt

[
εσ,t+1

εx,t+1

]

The innovation has a correlation structure

Et[εt+1ε
′
t+1] =

[
σ2
x ϕx,σσxσσ

ϕx,σσxσσ σ2
σ

]

We can decompose the covariance matrix of innovation as CC ′, where C is a lower triangular

martix. Denote the state vector [σ2
t , xt]

′ as Xt. Demean the state vector Xt and multiply both

sides by C−1, I transform the original state variable into yt = C−1(Xt−µ). The first element of yt

is just a linear transformation of σ2
t and the second element is a linear combination of xt and σ2

t so

that the innovations to these two elements are orthogonal to each other. The problem becomes

yt+1 = Ayt + σtηt+1

Where A = C−1ΦC and ηt+1 = C−1εt+1. Using the moment matching method proposed by Farmer

and Toda (2017), I can first discretize the volatility component and then conditional on the volatility

component, dicretize the second component. The original state variables are just Xt = µ+ Cyt

E Estimation of Cash Flow Parameters

E.1 Firm cash flow process

I use a parametric model to characterize the labor income and firm cash flow process. Specifi-

cally, assume firm’s quarterly cash flow process follows

Eit = ξiE,t + αE,i + βE,ixt + εiE,t

ξiE,t = ξiE,t−1 + ηiE,t

Where ξiE,t is permanent component of firm earnings and αE,i captures firm fix effect and hetero-

geneity in exposure to aggregate variables. Quarterly observations of firm fundamentals is available
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in Compustat. In order to eliminate potential seasonality effect in data, I use the quarter over quar-

ter growth rate to compute target moments.

E.2 Estimation Method

This section list the detailed step in estimating the jump intensity with respect to the labor

income process and firm cash flow process. Assume the permanent shock ηt is a mixture of jump

and Gaussian process

ηt = (Jg,t − Et[Jg,t]) + (Jb,t − Et[Jb,t]) +N(0, σ2
n)

Jg,t and Jb,t are compound Poisson jump process with time varying intensities. The jump intensity

for Jg,t is λ0,g +λ1,gxt, the jump intensity for Jb,t is λ0,b−λ1,bxt the size of a jump follow a normal

distribution N(µs,g, σ
2
s,g) for positive jumps and N(µs,b, σ

2
s,b) for negative jumps.

The model tries to match the sample moments in the data. I minimize the scaled deviation of

theoretical moments and sample moments. Define

Fn(θ) =
m(θ)− m̂n

|m̂n|

The objective function is

min
θ
Fn(θ)′WFn(θ)

where W is an identity matrix.

The distribution of log growth rate is just the convolutions of several Poisson distributions

and normal distributions. I can use the characteristic function of log growth rate distribution

and compute the density function through fractional fast Fourier transformation. The cash flow

growth process has a transitory shock component and permanent shock component. The charac-

teristic function of transitory shock εt− εt−4 is ϕε(ω) = exp[−σ2
εω

2]. The characteristic function of

permanent shock ∆ηt is

log(ϕ∆ηt(ω)) = (λ0g + λ1xt)(exp(iµsω −
1

2
σ2
sω

2)− 1) + (λ0b − λ1xt)(exp(−iµsω −
1

2
σ2
sω

2)− 1)

− 1

2
ω2σ2

n − (λ0g + λ1xt)iµsω + (λ0b − λ1xt)iµsω

We can calculate the characteristic function of cash flow growth process ϕ(ω) = E[exp{iω(wA,t −
wA,t−k)}] analytically as

logϕ(ω) =

k+2∑
j=0

[h(ρ(j)ω, xt−j)]− σ2
εω

2 − 1

2
σ2
βω

2
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where

h(ω, xt) = (λ0g + λ1xt)(exp(iµsω −
1

2
σ2
sω

2)− 1) + (λ0b − λ1xt)(exp(−iµsω −
1

2
σ2
sω

2)− 1)

− 1

2
ω2σ2

n − (λ0g + λ1xt)iµsω + (λ0b − λ1xt)iµsω

Standardize wA,t − wA,t−k to have mean 0 and standard deviation of 1

ϕs(ω) = ϕs(
ω

σA
) exp(−iωµA

σA
)

The density function of the standardized growth is

f(x) =
1

π
·Real[

∫ ∞
0

[ϕs(ω)e−iωx]dω]

I use trapezoid rule and fractional fast Fourier Transform to approximate the integration as a sum

over the equally-spaced grid [0, Ω̄], the grid for x is [−X̄, X̄]. Here I chose 210 = 1024 grid points and

Ω̄ = 20 and X̄ = 9. Then, use the Simpson’s rule, I numerically integrate density function to get

conditional CDF. The target quantiles are calculated using quadratic interpolation. To calculate

the mean function, use

∂ϕ(ω)

∂ω
= (

k+2∑
j=0

[h′(ρ(j)ω, xt−j)ρ(j)]− 2σ2
εω − σ2

βω)ϕ(ω)

where

h′(ω, xt) = (λ0g + λ1xt)(iµs − σ2
sω) exp(iµsω −

1

2
σ2
sω

2) + (λ0b − λ1xt)(−iµs − σ2
sω) exp(−iµsω

− 1

2
σ2
sω

2)− ωσ2
n − (λ0g + λ1xt)iµs + (λ0b − λ1xt)iµs

set ω = 0 to get the mean. To calculate the second moment function, use

∂2ϕ(ω)

∂ω2
= (

k+2∑
j=0

[h′′(ρ(j)ω, xt−j)ρ(j)2]− 2σ2
ε − σ2

β)ϕ(ω) +
ϕ′(ω)2

ϕ(ω)

where

h′′(ω, xt) = (λ0g + λ1xt)(−σ2
s) exp(iµsω −

1

2
σ2
sω

2)

+ (λ0b − λ1xt)(−σ2
s) exp(−iµsω −

1

2
σ2
sω

2)

+ (λ0g + λ1xt)(iµs − σ2
sω)2 exp(iµsω −

1

2
σ2
sω

2)

+ (λ0b − λ1xt)(−iµs − σ2
sω)2 exp(−iµsω −

1

2
σ2
sω

2)− σ2
n

set ω = 0 to get the second moment
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E.3 Estimation Results

My firm cash flow model tries to match the sample moment computed from quarterly sales

growth data. The target moments are: left-tail measure (P50 − P10, P50 − P25), right tail measure

(P90−P50, P75−P50), and skewness in expansion, recession and difference; average range (P90−P10),

standard deviation and kurtosis in whole sample.

Table 17 reports the estimation result. The average conditional probability of negative cash

flow jump is 3%. Ones standard deviation increase in skewness index is associated with about 2%

decrease in jump intensity. The lower bound of jump intensity is set to be 0. Once a negative jump

occurs, the cash flow drops about 40%.
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Figure 13. Skewness Index.

This figure shows the fitted time series of quarterly skewness index (normalized to have mean 0 and variance 1). The
figure plots the fitted time series with top 5 highest R2. The variables and method are all variables by 3PRF, all
variables by IMSE, real activity variables by IMSE, employment variables by IMSE, and real inventory variables by
IMSE. The shaded area denotes the NBER recession period. The sample spans 1960Q1-2013Q4.
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Table 13. Macro Variable List.

This table lists the mnemonics, short names and transformations for the 97 macroeconomic series used in the paper.
All series are from the Global Insights Basic Economics Database. Slow-moving variables are marked with *.

No. Mnemonic Short name Transformation

Real output and income

1 IPS11.M* INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL ∆ln
2 IPS299.M* INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS ∆ln
3 IPS12.M* INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS ∆ln
4 IPS13.M* INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS ∆ln
5 IPS18.M* INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS ∆ln
6 IPS25.M* INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT ∆ln
7 IPS32.M* INDUSTRIAL PRODUCTION INDEX - MATERIALS ∆ln
8 IPS34.M* INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS ∆ln
9 IPS38.M* INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS ∆ln

10 IPS43.M* INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) ∆ln
11 IPS311.M* INDUSTRIAL PRODUCTION INDEX - OIL & GAS WELL DRILLING & MANUFACTURED HOMES ∆ln
12 IPS307.M* INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES ∆ln
13 IPS10.M* INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX ∆ln
14 UTL11.M* CAPACITY UTILIZATION - MANUFACTURING (SIC)
15 PMI.M* PURCHASING MANAGERS’ INDEX (SA)
16 PMP.M* NAPM PRODUCTION INDEX (PERCENT)
17 PI001.M* PERSONAL INCOME, BIL$ , SAAR ∆ln
18 A0M051.M* PERS INCOME LESS TRSF PMT (AR BIL. CHAIN 2009 $),SA-US ∆ln

Employment and hours

19 LHEM.M* CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) ∆ln
20 LHNAG.M* CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) ∆ln
21 LHUR.M* UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS and OVER (%,SA)
22 LHU680.M* UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
23 LHU5.M* UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
24 LHU14.M* UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)
25 LHU15.M* UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)
26 LHU26.M* UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)
27 CES001.M* EMPLOYEES, NONFARM - TOTAL NONFARM ∆ln
28 CES002.M* EMPLOYEES, NONFARM - TOTAL PRIVATE ∆ln
29 CES003.M* EMPLOYEES, NONFARM - GOODS-PRODUCING ∆ln
30 CES006.M* EMPLOYEES, NONFARM - MINING ∆ln
31 CES011.M* EMPLOYEES, NONFARM - CONSTRUCTION ∆ln
32 CES015.M* EMPLOYEES, NONFARM - MFG ∆ln
33 CES017.M* EMPLOYEES, NONFARM - DURABLE GOODS ∆ln
34 CES033.M* EMPLOYEES, NONFARM - NONDURABLE GOODS ∆ln
35 CES046.M* EMPLOYEES, NONFARM - SERVICE-PROVIDING ∆ln
36 CES048.M* EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES ∆ln
37 CES049.M* EMPLOYEES, NONFARM - WHOLESALE TRADE ∆ln
38 CES053.M* EMPLOYEES, NONFARM - RETAIL TRADE ∆ln
39 CES140.M* EMPLOYEES, NONFARM - GOVERNMENT ∆ln
40 CES154.M* AVG WKLY HOURS, PROD WRKRS, NONFARM - MFG
41 CES155.M* AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM - MFG
42 PMEMP.M* NAPM EMPLOYMENT INDEX (PERCENT)

Consumption

43 PI031.M* PERSONAL CONSUMPTION EXPENDITURES, BIL$ , SAAR ∆ln
44 PI032.M* PERSONAL CONSUMPTION EXPENDITURES - DURABLE GOODS, BIL$ , SAAR ∆ln
45 PI033.M* PERSONAL CONSUMPTION EXPENDITURES - NONDURABLE GOODS, BIL$ , SAAR ∆ln
46 PI034.M* PERSONAL CONSUMPTION EXPENDITURES - SERVICES, BIL$ , SAAR ∆ln
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Table 13. Macro Variable List: Continued.

This table lists the mnemonics, short names and transformations for the 97 macroeconomic series used in the paper.
All series are from the Global Insights Basic Economics Database. Slow-moving variables are marked with *.

No. Mnemonic Short name Transformation

Housing starts and sales

47 HSFR.M HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA ln
48 HSNE.M HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. ln
49 HSMW.M HOUSING STARTS:MIDWEST(THOUS.U.)S.A. ln
50 HSSOU.M HOUSING STARTS:SOUTH (THOUS.U.)S.A. ln
51 HSWST.M HOUSING STARTS:WEST (THOUS.U.)S.A. ln
52 HS6BR.M HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,NSA) ln
53 HMOB.M MOBILE HOMES: MANUFACTURERS’ SHIPMENTS (THOUS.OF UNITS,SAAR) ln

Real inventories, orders and un lled orders

54 PMNV.M NAPM INVENTORIES INDEX (PERCENT)
55 PMNO.M NAPM NEW ORDERS INDEX (PERCENT)
56 PMDEL.M NAPM VENDOR DELIVERIES INDEX (PERCENT)
57 MOCMQ.M NEW ORDERS (NET) - CONSUMER GOODS and MATERIALS, 1996 $ (BCI) ∆ln
58 MSONDQ.M NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 $ (BCI) ∆ln

Stock prices

59 FSPCOM.M S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) ∆ln
60 FSPIN.M S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) ∆ln

Exchange rates

61 EXRUK.M FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) ∆ln
62 EXRCAN.M FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) ∆ln

Interest rates

63 FYFF.M INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)
64 FYGM3.M INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)
65 FYGM6.M INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)
66 FYGT1.M INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)
67 FYGT5.M INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)
68 FYGT10.M INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)
69 FYGM3.M-FYFF.M SPREAD: FYGM3.M-FYFF.M
70 FYGM6.M-FYFF.M SPREAD: FYGM6.M-FYFF.M
71 FYGT1.M-FYFF.M SPREAD: FYGT1.M-FYFF.M
72 FYGT5.M-FYFF.M SPREAD: FYGT5.M-FYFF.M
73 FYGT10.M-FYFF.M SPREAD: FYGT10.M-FYFF.M

Money and credit quantity aggregates

74 ALCIBL00.M COML&IND LOANS OUTST IN 2009 $,SA-US ∆ln
75 CCINRV.M CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) ∆ln
76 FM1.M MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) ∆ln
77 FM2.M MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$,SA), ∆ln
78 MBASE.M REVISED MONETARY BASE-ADJUSTED-(FED RESERVE BANK-SAINT LOUIS),SA-US ∆ln
79 MNY2.M M2 - MONEY SUPPLY - M1 + SAVINGS DEPOSITS, SMALL TIME DEPOSITS, & MMMFS [H6],SA-US ∆ln

Price indexes

80 PMCP.M NAPM COMMODITY PRICES INDEX (PERCENT)
81 PWFSA.M* PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) ∆ln
82 PWFCSA.M* PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) ∆ln
83 PWIMSA.M* PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) ∆ln
84 PWCMSA.M* PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) ∆ln
85 PUNEW.M* CPI-U: ALL ITEMS (82-84=100,SA) ∆ln
86 PU83.M* CPI-U: APPAREL & UPKEEP (82-84=100,SA) ∆ln
87 PU84.M* CPI-U: TRANSPORTATION (82-84=100,SA) ∆ln
88 PU85.M* CPI-U: MEDICAL CARE (82-84=100,SA) ∆ln
89 PUC.M* CPI-U: COMMODITIES (82-84=100,SA) ∆ln
90 PUCD.M* CPI-U: DURABLES (82-84=100,SA) ∆ln
91 PUS.M* CPI-U: SERVICES (82-84=100,SA) ∆ln
92 PUXF.M* CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) ∆ln
93 PUXHS.M* CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) ∆ln
94 PUXM.M* CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) ∆ln

Average hourly earnings

95 CES277.M* AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION ∆ln
96 CES278.M* AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG ∆ln

Miscellaneous

97 U0M083.M BUSINESS CYCLE INDICATORS,CONSUMER EXPECTATIONS,NSA
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Table 14. Skewness Index: Goodness of Fit.

This table shows the goodness of fit of different method in constructing the skewness index. The first column shows
the variable set. Except for the benchmark 3PRF (3 pass regression filter) case, all the other construction use IMSE
(inverse mean square error) method. The third column shows the regression R-squared and the forth column shows
the correlation between constructed skewness index with the benchmark case (All variable 3PRF). The target is
1-year labor income growth skewness from 1978-2010, the constructed skewness index spans 1960Q1-2013Q4.

Category Var Num. R2 Corr.

All Variables (3PRF) 97 70.03% 1
All Variables (IMSE) 97 51.76% 0.92
Real output and income 18 62.83% 0.85
Employment and hours 24 60.24% 0.87
Real inventories, orders, and unfilled orders 5 55.74% 0.81
Consumption 4 29.57% 0.34
Money and credit quantity aggregates 6 25.50% 0.47
Stock indices 2 24.00% 0.12
Price indices 15 23.91% 0.21
Exchange rates 2 20.52% 0.21
Average hourly earnings 2 17.76% 0.17
Consumer expectation 1 13.92% 0.52
Interest rates 11 1.35% 0.21
Housing starts and sales 7 8.33% 0.38

54



Table 15. Stock Return Predictability: in-sample.

This table shows the results of in-sample stock return predictability regression

re,t+1→t+4 − rf = β0 + β1St + γXt + εt.

The regression use time t variable to forecast 1-year ahead stock return. St is the skewness index and Xt is a vector
of controls, including dividend payout ratio, long term yield, dividend price ratio, treasury-bill rate, book to market
ratio, default yield spread, net equity expansion, term spread, stock variance, inflation, long term return and default
return spread. All independent variables are standardized to have mean 0 and standard deviation of 1. For each
regression, the table reports OLS estimates (numbers in percentage) and Newey-West t-statistics with 4 lags. The
sample spans 1960Q1-2013Q4.

1-year stock return

(1) (2) (3) (4) (5) (6) (7)

skewness index -3.80 -2.97
-(2.61) -(1.43)

Initial Claims 4.03 4.33
(2.12) (1.26)

Unemployment 4.45 0.84
(2.80) (0.42)

Controls N N N Y Y Y Y
Observation 216 188 216 216 216 188 216
R2 0.049 0.052 0.068 0.236 0.258 0.253 0.244
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Table 16. Stock Return Predictability: out-of-sample.

This table shows the out-of-sample r squared (oos R2) of stock return predictability regression. I leave the first 10
year data as training period. I report the oos R2 for forecasting period of 1 quarter, 1 year, 3 year and 5 year. The
last column shows the sample period.

Variables 1 quarter return 1 year return 3 year return 5 year return sample period

Unemployment 0.52% 5.93% 20.50% 38.21% 1960Q1-2012Q4
Initial claims -0.67% -1.44% 7.07% 15.44% 1967Q1-2012Q4
Dividend payout ratio -8.85% -2.16% -5.03% -12.02% 1960Q1-2012Q4
Long term yield -4.21% -4.62% 5.02% 8.32% 1960Q1-2012Q4
Dividend yield -2.91% -0.51% 8.98% 18.69% 1960Q1-2012Q4
Dividend Price ratio -3.09% -0.15% 9.79% 21.00% 1960Q1-2012Q4
Treasury-bill rate -3.23% -5.07% -1.25% -5.02% 1960Q1-2012Q4
Earning price ratio -8.34% -1.53% 6.88% 10.19% 1960Q1-2012Q4
Book to market -5.72% -1.56% 0.11% 5.73% 1960Q1-2012Q4
Default yield spread -2.19% 1.18% 1.86% 13.96% 1960Q1-2012Q4
Net equity expansion -3.10% -4.65% -1.82% -1.37% 1960Q1-2012Q4
Term spread -1.54% 0.02% 8.52% 8.74% 1960Q1-2012Q4
Stock variance -17.94% -18.85% -18.03% -15.40% 1960Q1-2012Q4
Inflation -2.95% -3.17% -1.81% -5.22% 1960Q1-2012Q4
Long term return -1.85% -0.25% -1.33% -0.94% 1960Q1-2012Q4
Defualt return spread -1.43% -1.66% -1.29% -4.97% 1960Q1-2012Q4
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Table 17. Estimated Cash Flow Growth Process Parameters.

This table reports sales growth process parameters estimated by minimizing a weighted sum of squared errors between
the sample moments and model implied moments. The target moments are computed from Compustat quarterly
1978-2014.

Parameters Value Description

λ0,g 4.73% Average quarterly intensity of positive jump
λ0,b 3.25% Average quarterly intensity of negative jump
λ1,g 0.76% Sensitivity of positive jump intensity to skewness index
λ1,b 1.99% Sensitivity of negative jump intensity to skewness index
µs,g 34.80% Average change in log sales given a positive jump
σs,g 0.02% Standard deviation of positive jump
µs,b 38.62% Average change in log sales given a negative jump
σs,b 0.02% Standard deviation of negative jump
σn 2.13% Standard deviation of permanent shock
σε 9.18% Standard deviation of temporary shock
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